# Black Re-ID: A Head-shoulder Descriptor for the Challenging Problem of Person Re-Identification ## Training To train a model, run ```bash CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file ``` ## Evaluation To evaluate the model in test set, run similarly: ```bash CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file --eval-only MODEL.WEIGHTS model.pth ``` ## Experimental Results ### Market1501 dataset | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | ResNet50 | ImageNet | 93.3% | 84.6% | | MGN | ImageNet | 95.7% | 86.9% | | HAA (ResNet50) | ImageNet | 95% | 87.1% | | HAA (MGN) | ImageNet | 95.8% | 89.5% | ### DukeMTMC dataset | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | ResNet50 | ImageNet | 86.2% | 75.3% | | MGN | ImageNet | 88.7% | 78.4% | | HAA (ResNet50) | ImageNet | 87.7% | 75.7% | | HAA (MGN) | ImageNet | 89% | 80.4% | ### Black-reid black group | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | ResNet50 | ImageNet | 80.9% | 70.8% | | MGN | ImageNet | 86.7% | 79.1% | | HAA (ResNet50) | ImageNet | 86.7% | 79% | | HAA (MGN) | ImageNet | 91.0% | 83.8% | ### White-reid white group | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | ResNet50 | ImageNet | 89.5% | 75.8% | | MGN | ImageNet | 94.3% | 85.8% | | HAA (ResNet50) | ImageNet | 93.5% | 84.4% | | HSE (MGN) | ImageNet | 95.3% | 88.1% |