# FastReID Model Zoo and Baselines ## Introduction **BoT**: Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral. **AGW**: This is a re-implementation of [ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey) **SBS**: stronger baseline on top of BoT with tricks: 1. Non-local block 2. GeM pooling 3. Circle loss 4. Freeze backbone training 5. Cutout data augmentation & Auto Augmentation 6. Cosine annealing learning rate decay 7. Soft margin triplet loss ### Market1501 Baselines **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50) | ImageNet | 94.4% | 86.1% | 59.4% | | BoT(R50-ibn) | ImageNet | 94.9% | 87.6% | 64.1% | | BoT(S50) | ImageNet | 95.1% | 88.5% | 66.0% | | BoT(R101-ibn) | ImageNet| 95.4% | 88.9% | 67.4% | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW(R50) | ImageNet | 95.3% | 88.2% | 66.3% | | AGW(R50-ibn) | ImageNet | 95.1% | 88.7% | 67.1% | | AGW(S50) | ImageNet | 94.7% | 87.1% | 62.2% | | AGW(R101-ibn) | ImageNet | 95.5% | 89.5% | 69.5% | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | SBS(R50) | ImageNet | 95.4% | 88.2% | 64.8% | | SBS(R50-ibn) | ImageNet | 95.7% | 89.3% | 67.5% | | SBS(S50) | ImageNet | 95.0% | 87.0% | 60.6% | | SBS(R101-ibn) | ImageNet | 96.3% | 90.3% | 70.0% | ### DukeMTMC Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50) | ImageNet | 87.1% | 76.9% | 41.6% | | BoT(R50-ibn) | ImageNet | 89.6% | 79.1% | 44.4% | | BoT(S50) | ImageNet | 87.8% | 77.7% | 39.6% | | BoT(R101-ibn) | ImageNet| 91.1% | 81.3% | 47.7% | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW(R50) | ImageNet | 89.0% | 79.9% | 46.3% | | AGW(R50-ibn) | ImageNet | 89.8% | 80.7% | 47.7% | | AGW(S50) | ImageNet | 89.9% | 79.7% | 44.2% | | AGW(R101-ibn) | ImageNet | 91.4% | 82.1% | 50.2% | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | SBS(R50) | ImageNet | 89.6% | 79.8% | 44.6% | | SBS(R50-ibn) | ImageNet | 91.3% | 81.6% | 47.6% | | SBS(S50) | ImageNet | 90.5% | 79.1% | 42.7% | | SBS(R101-ibn) | ImageNet | 92.4% | 83.2% | 49.7% | ### MSMT17 Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50) | ImageNet | 72.3% | 48.3% | 9.7% | | BoT(R50-ibn) | ImageNet | 77.0% | 54.4% | 12.5% | | BoT(S50) | ImageNet | 80.4% | 59.2% | 15.9% | | BoT(R101-ibn) | ImageNet| 79.0% | 57.5% | 14.6% | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW(R50) | ImageNet | 76.7% | 53.6% | 12.2% | | AGW(R50-ibn) | ImageNet | 79.3% | 57.5% | 14.3% | | AGW(S50) | ImageNet | 77.3% | 54.7% | 12.6% | | AGW(R101-ibn) | ImageNet | 80.8% | 60.2% | 16.5% | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | SBS(R50) | ImageNet | 83.3% | 59.9% | 14.6% | | SBS(R50-ibn) | ImageNet | 84.0% | 61.2% | 15.5% | | SBS(S50) | ImageNet | 82.6% | 58.2% | 13.2% | | SBS(R101-ibn) | ImageNet | 85.1% | 63.3% | 16.6% | ### VeRi Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50-ibn) | ImageNet | 96.1% | 78.8% | 43.8% | ### VehicleID Baseline **BoT**: Method: BoT(R50-ibn) | Testset size | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | Small(800) | ImageNet | 95.5% | 89.5% | 77.0% | | Medium(1600) | ImageNet | 93.8% | 85.6% | 69.4% | | Large(2400) | ImageNet | 93.3% | 84.1% | 67.4% | ### VERI-Wild Baseline **BoT**: Method: BoT(R50-ibn) | Testset size | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | Small(3000) | ImageNet | 96.4% | 87.7% | 69.2% | | Medium(5000) | ImageNet | 95.1% | 83.5% | 61.2% | | Large(10000) | ImageNet | 92.5% | 77.3% | 49.8% |