""" Vision Transformer (ViT) in PyTorch A PyTorch implement of Vision Transformers as described in 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 The official jax code is released and available at https://github.com/google-research/vision_transformer Status/TODO: * Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. * Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. * Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. * Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2020 Ross Wightman """ import logging import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from fastreid.layers import DropPath, trunc_normal_, to_2tuple from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message from .build import BACKBONE_REGISTRY logger = logging.getLogger(__name__) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1])) if isinstance(o, (list, tuple)): o = o[-1] # last feature if backbone outputs list/tuple of features feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) if hasattr(self.backbone, 'feature_info'): feature_dim = self.backbone.feature_info.channels()[-1] else: feature_dim = self.backbone.num_features self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Conv2d(feature_dim, embed_dim, 1) def forward(self, x): x = self.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.proj(x).flatten(2).transpose(1, 2) return x class PatchEmbed_overlap(nn.Module): """ Image to Patch Embedding with overlapping patches """ def __init__(self, img_size=224, patch_size=16, stride_size=20, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) stride_size_tuple = to_2tuple(stride_size) self.num_x = (img_size[1] - patch_size[1]) // stride_size_tuple[1] + 1 self.num_y = (img_size[0] - patch_size[0]) // stride_size_tuple[0] + 1 num_patches = self.num_x * self.num_y self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride_size) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.InstanceNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) x = x.flatten(2).transpose(1, 2) # [64, 8, 768] return x class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, stride_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., camera=0, drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), sie_xishu=1.0): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed_overlap( img_size=img_size, patch_size=patch_size, stride_size=stride_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.cam_num = camera self.sie_xishu = sie_xishu # Initialize SIE Embedding if camera > 1: self.sie_embed = nn.Parameter(torch.zeros(camera, 1, embed_dim)) trunc_normal_(self.sie_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) trunc_normal_(self.cls_token, std=.02) trunc_normal_(self.pos_embed, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x, camera_id=None): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.cam_num > 0: x = x + self.pos_embed + self.sie_xishu * self.sie_embed[camera_id] else: x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0].reshape(x.shape[0], -1, 1, 1) def resize_pos_embed(posemb, posemb_new, hight, width): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 ntok_new = posemb_new.shape[1] posemb_token, posemb_grid = posemb[:, :1], posemb[0, 1:] ntok_new -= 1 gs_old = int(math.sqrt(len(posemb_grid))) logger.info('Resized position embedding from size:{} to size: {} with height:{} width: {}'.format(posemb.shape, posemb_new.shape, hight, width)) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(hight, width), mode='bilinear') posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, hight * width, -1) posemb = torch.cat([posemb_token, posemb_grid], dim=1) return posemb @BACKBONE_REGISTRY.register() def build_vit_backbone(cfg): """ Create a Vision Transformer instance from config. Returns: SwinTransformer: a :class:`SwinTransformer` instance. """ # fmt: off input_size = cfg.INPUT.SIZE_TRAIN pretrain = cfg.MODEL.BACKBONE.PRETRAIN pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH depth = cfg.MODEL.BACKBONE.DEPTH sie_xishu = cfg.MODEL.BACKBONE.SIE_COE stride_size = cfg.MODEL.BACKBONE.STRIDE_SIZE drop_ratio = cfg.MODEL.BACKBONE.DROP_RATIO drop_path_ratio = cfg.MODEL.BACKBONE.DROP_PATH_RATIO attn_drop_rate = cfg.MODEL.BACKBONE.ATT_DROP_RATE # fmt: on num_depth = { 'small': 8, 'base': 12, }[depth] num_heads = { 'small': 8, 'base': 12, }[depth] mlp_ratio = { 'small': 3., 'base': 4. }[depth] qkv_bias = { 'small': False, 'base': True }[depth] qk_scale = { 'small': 768 ** -0.5, 'base': None, }[depth] model = VisionTransformer(img_size=input_size, sie_xishu=sie_xishu, stride_size=stride_size, depth=num_depth, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path_rate=drop_path_ratio, drop_rate=drop_ratio, attn_drop_rate=attn_drop_rate) if pretrain: try: state_dict = torch.load(pretrain_path, map_location=torch.device('cpu')) logger.info(f"Loading pretrained model from {pretrain_path}") if 'model' in state_dict: state_dict = state_dict.pop('model') if 'state_dict' in state_dict: state_dict = state_dict.pop('state_dict') for k, v in state_dict.items(): if 'head' in k or 'dist' in k: continue if 'patch_embed.proj.weight' in k and len(v.shape) < 4: # For old models that I trained prior to conv based patchification O, I, H, W = model.patch_embed.proj.weight.shape v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape != model.pos_embed.shape: # To resize pos embedding when using model at different size from pretrained weights if 'distilled' in pretrain_path: logger.info("distill need to choose right cls token in the pth.") v = torch.cat([v[:, 0:1], v[:, 2:]], dim=1) v = resize_pos_embed(v, model.pos_embed.data, model.patch_embed.num_y, model.patch_embed.num_x) state_dict[k] = v except FileNotFoundError as e: logger.info(f'{pretrain_path} is not found! Please check this path.') raise e except KeyError as e: logger.info("State dict keys error! Please check the state dict.") raise e incompatible = model.load_state_dict(state_dict, strict=False) if incompatible.missing_keys: logger.info( get_missing_parameters_message(incompatible.missing_keys) ) if incompatible.unexpected_keys: logger.info( get_unexpected_parameters_message(incompatible.unexpected_keys) ) return model