# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from glob import glob from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['LPW', ] @DATASET_REGISTRY.register() class LPW(ImageDataset): """LPW """ dataset_dir = "pep_256x128/data_slim" dataset_name = "lpw" def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir) required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] file_path_list = ['scen1', 'scen2', 'scen3'] for scene in file_path_list: cam_list = os.listdir(os.path.join(train_path, scene)) for cam in cam_list: camid = self.dataset_name + "_" + cam pid_list = os.listdir(os.path.join(train_path, scene, cam)) for pid_dir in pid_list: img_paths = glob(os.path.join(train_path, scene, cam, pid_dir, "*.jpg")) for img_path in img_paths: pid = self.dataset_name + "_" + scene + "-" + pid_dir data.append([img_path, pid, camid]) return data