# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import torch.nn.functional as F from torch import nn from fastreid.layers import * from fastreid.utils.weight_init import weights_init_kaiming, weights_init_classifier from .build import REID_HEADS_REGISTRY @REID_HEADS_REGISTRY.register() class EmbeddingHead(nn.Module): def __init__(self, cfg): super().__init__() # fmt: off feat_dim = cfg.MODEL.BACKBONE.FEAT_DIM embedding_dim = cfg.MODEL.HEADS.EMBEDDING_DIM num_classes = cfg.MODEL.HEADS.NUM_CLASSES neck_feat = cfg.MODEL.HEADS.NECK_FEAT pool_type = cfg.MODEL.HEADS.POOL_LAYER cls_type = cfg.MODEL.HEADS.CLS_LAYER with_bnneck = cfg.MODEL.HEADS.WITH_BNNECK norm_type = cfg.MODEL.HEADS.NORM if pool_type == 'fastavgpool': self.pool_layer = FastGlobalAvgPool2d() elif pool_type == 'avgpool': self.pool_layer = nn.AdaptiveAvgPool2d(1) elif pool_type == 'maxpool': self.pool_layer = nn.AdaptiveMaxPool2d(1) elif pool_type == 'gempoolP': self.pool_layer = GeneralizedMeanPoolingP() elif pool_type == 'gempool': self.pool_layer = GeneralizedMeanPooling() elif pool_type == "avgmaxpool": self.pool_layer = AdaptiveAvgMaxPool2d() elif pool_type == 'clipavgpool': self.pool_layer = ClipGlobalAvgPool2d() elif pool_type == "identity": self.pool_layer = nn.Identity() elif pool_type == "flatten": self.pool_layer = Flatten() else: raise KeyError(f"{pool_type} is not supported!") # fmt: on self.neck_feat = neck_feat bottleneck = [] if embedding_dim > 0: bottleneck.append(nn.Conv2d(feat_dim, embedding_dim, 1, 1, bias=False)) feat_dim = embedding_dim if with_bnneck: bottleneck.append(get_norm(norm_type, feat_dim, bias_freeze=True)) self.bottleneck = nn.Sequential(*bottleneck) # classification layer # fmt: off if cls_type == 'linear': self.classifier = nn.Linear(feat_dim, num_classes, bias=False) elif cls_type == 'arcSoftmax': self.classifier = ArcSoftmax(cfg, feat_dim, num_classes) elif cls_type == 'circleSoftmax': self.classifier = CircleSoftmax(cfg, feat_dim, num_classes) elif cls_type == 'cosSoftmax': self.classifier = CosSoftmax(cfg, feat_dim, num_classes) else: raise KeyError(f"{cls_type} is not supported!") # fmt: on self.bottleneck.apply(weights_init_kaiming) self.classifier.apply(weights_init_classifier) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ global_feat = self.pool_layer(features) bn_feat = self.bottleneck(global_feat) bn_feat = bn_feat[..., 0, 0] # Evaluation # fmt: off if not self.training: return bn_feat # fmt: on # Training if self.classifier.__class__.__name__ == 'Linear': cls_outputs = self.classifier(bn_feat) pred_class_logits = F.linear(bn_feat, self.classifier.weight) else: cls_outputs = self.classifier(bn_feat, targets) pred_class_logits = self.classifier.s * F.linear(F.normalize(bn_feat), F.normalize(self.classifier.weight)) # fmt: off if self.neck_feat == "before": feat = global_feat[..., 0, 0] elif self.neck_feat == "after": feat = bn_feat else: raise KeyError(f"{self.neck_feat} is invalid for MODEL.HEADS.NECK_FEAT") # fmt: on return { "cls_outputs": cls_outputs, "pred_class_logits": pred_class_logits, "features": feat, }