# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import copy import logging from collections import OrderedDict import numpy as np import torch import torch.nn.functional as F from fastreid.evaluation.evaluator import DatasetEvaluator from fastreid.evaluation.rank import evaluate_rank from fastreid.utils import comm from .dsr_distance import compute_dsr_dist logger = logging.getLogger('fastreid.partialreid.dsr_evaluation') class DsrEvaluator(DatasetEvaluator): def __init__(self, cfg, num_query, output_dir=None): self.cfg = cfg self._num_query = num_query self._output_dir = output_dir self.features = [] self.spatial_features = [] self.scores = [] self.pids = [] self.camids = [] def reset(self): self.features = [] self.spatial_features = [] self.scores = [] self.pids = [] self.camids = [] def process(self, inputs, outputs): self.pids.extend(inputs["targets"]) self.camids.extend(inputs["camids"]) self.features.append(F.normalize(outputs[0]).cpu()) outputs1 = F.normalize(outputs[1].data).cpu() self.spatial_features.append(outputs1) self.scores.append(outputs[2].cpu()) def evaluate(self): if comm.get_world_size() > 1: comm.synchronize() features = comm.gather(self.features) features = sum(features, []) spatial_features = comm.gather(self.spatial_features) spatial_features = sum(spatial_features, []) scores = comm.gather(self.scores) scores = sum(scores, []) pids = comm.gather(self.pids) pids = sum(pids, []) camids = comm.gather(self.camids) camids = sum(camids, []) # fmt: off if not comm.is_main_process(): return {} # fmt: on else: features = self.features spatial_features = self.spatial_features scores = self.scores pids = self.pids camids = self.camids features = torch.cat(features, dim=0) spatial_features = torch.cat(spatial_features, dim=0).numpy() scores = torch.cat(scores, dim=0) # query feature, person ids and camera ids query_features = features[:self._num_query] query_pids = np.asarray(pids[:self._num_query]) query_camids = np.asarray(camids[:self._num_query]) # gallery features, person ids and camera ids gallery_features = features[self._num_query:] gallery_pids = np.asarray(pids[self._num_query:]) gallery_camids = np.asarray(camids[self._num_query:]) if self.cfg.TEST.METRIC == "cosine": query_features = F.normalize(query_features, dim=1) gallery_features = F.normalize(gallery_features, dim=1) dist = 1 - torch.mm(query_features, gallery_features.t()).numpy() self._results = OrderedDict() query_features = query_features.numpy() gallery_features = gallery_features.numpy() if self.cfg.TEST.DSR.ENABLED: logger.info("Testing with DSR setting") dsr_dist = compute_dsr_dist(spatial_features[:self._num_query], spatial_features[self._num_query:], dist, scores[:self._num_query]) max_value = 0 k = 0 for i in range(0, 101): lamb = 0.01 * i dist1 = (1 - lamb) * dist + lamb * dsr_dist cmc, all_AP, all_INP = evaluate_rank(dist1, query_pids, gallery_pids, query_camids, gallery_camids) if (cmc[0] > max_value): k = lamb max_value = cmc[0] dist1 = (1 - k) * dist + k * dsr_dist cmc, all_AP, all_INP = evaluate_rank(dist1, query_pids, gallery_pids, query_camids, gallery_camids) else: cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids) mAP = np.mean(all_AP) mINP = np.mean(all_INP) for r in [1, 5, 10]: self._results['Rank-{}'.format(r)] = cmc[r - 1] * 100 self._results['mAP'] = mAP * 100 self._results['mINP'] = mINP * 100 return copy.deepcopy(self._results)