# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import logging import sys sys.path.append('.') from fastreid.config import get_cfg from fastreid.engine import DefaultTrainer from fastreid.engine import default_argument_parser, default_setup, launch from fastreid.utils.checkpoint import Checkpointer from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.build import _root, build_reid_train_loader, build_reid_test_loader from fastreid.data.transforms import build_transforms from fastreid.utils import comm from fastattr import * class AttrTrainer(DefaultTrainer): sample_weights = None @classmethod def build_model(cls, cfg): """ Returns: torch.nn.Module: It now calls :func:`fastreid.modeling.build_model`. Overwrite it if you'd like a different model. """ model = DefaultTrainer.build_model(cfg) if cfg.MODEL.LOSSES.BCE.WEIGHT_ENABLED and \ AttrTrainer.sample_weights is not None: setattr(model, "sample_weights", AttrTrainer.sample_weights.to(model.device)) else: setattr(model, "sample_weights", None) return model @classmethod def build_train_loader(cls, cfg): logger = logging.getLogger("fastreid.attr_dataset") train_items = list() attr_dict = None for d in cfg.DATASETS.NAMES: dataset = DATASET_REGISTRY.get(d)(root=_root, combineall=cfg.DATASETS.COMBINEALL) if comm.is_main_process(): dataset.show_train() if attr_dict is not None: assert attr_dict == dataset.attr_dict, f"attr_dict in {d} does not match with previous ones" else: attr_dict = dataset.attr_dict train_items.extend(dataset.train) train_transforms = build_transforms(cfg, is_train=True) train_set = AttrDataset(train_items, train_transforms, attr_dict) data_loader = build_reid_train_loader(cfg, train_set=train_set) AttrTrainer.sample_weights = data_loader.dataset.sample_weights return data_loader @classmethod def build_test_loader(cls, cfg, dataset_name): dataset = DATASET_REGISTRY.get(dataset_name)(root=_root) attr_dict = dataset.attr_dict if comm.is_main_process(): dataset.show_test() test_items = dataset.test test_transforms = build_transforms(cfg, is_train=False) test_set = AttrDataset(test_items, test_transforms, attr_dict) data_loader, _ = build_reid_test_loader(cfg, test_set=test_set) return data_loader @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): data_loader = cls.build_test_loader(cfg, dataset_name) return data_loader, AttrEvaluator(cfg, output_folder) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_attr_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: cfg.defrost() cfg.MODEL.BACKBONE.PRETRAIN = False model = AttrTrainer.build_model(cfg) Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model res = AttrTrainer.test(cfg, model) return res trainer = AttrTrainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )