# encoding: utf-8 """ @author: l1aoxingyu @contact: sherlockliao01@gmail.com """ import torch import torch.nn.functional as F from fastreid.utils.events import get_event_storage def log_accuracy(pred_class_logits, gt_classes, topk=(1,)): """ Log the accuracy metrics to EventStorage. """ bsz = pred_class_logits.size(0) maxk = max(topk) _, pred_class = pred_class_logits.topk(maxk, 1, True, True) pred_class = pred_class.t() correct = pred_class.eq(gt_classes.view(1, -1).expand_as(pred_class)) ret = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(dim=0, keepdim=True) ret.append(correct_k.mul_(1. / bsz)) storage = get_event_storage() storage.put_scalar("cls_accuracy", ret[0]) def cross_entropy_loss(pred_class_outputs, gt_classes, eps, alpha=0.2): num_classes = pred_class_outputs.size(1) if eps >= 0: smooth_param = eps else: # Adaptive label smooth regularization soft_label = F.softmax(pred_class_outputs, dim=1) smooth_param = alpha * soft_label[torch.arange(soft_label.size(0)), gt_classes].unsqueeze(1) log_probs = F.log_softmax(pred_class_outputs, dim=1) with torch.no_grad(): targets = torch.ones_like(log_probs) targets *= smooth_param / (num_classes - 1) targets.scatter_(1, gt_classes.data.unsqueeze(1), (1 - smooth_param)) loss = (-targets * log_probs).sum(dim=1) with torch.no_grad(): non_zero_cnt = max(loss.nonzero(as_tuple=False).size(0), 1) loss = loss.sum() / non_zero_cnt return loss