# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import torch from torch import nn from fastreid.layers import * from fastreid.modeling.heads.build import REID_HEADS_REGISTRY from fastreid.utils.weight_init import weights_init_kaiming, weights_init_classifier @REID_HEADS_REGISTRY.register() class AttrHead(nn.Module): def __init__(self, cfg): super().__init__() # fmt: off feat_dim = cfg.MODEL.BACKBONE.FEAT_DIM num_classes = cfg.MODEL.HEADS.NUM_CLASSES pool_type = cfg.MODEL.HEADS.POOL_LAYER cls_type = cfg.MODEL.HEADS.CLS_LAYER with_bnneck = cfg.MODEL.HEADS.WITH_BNNECK if pool_type == 'fastavgpool': self.pool_layer = FastGlobalAvgPool2d() elif pool_type == 'avgpool': self.pool_layer = nn.AdaptiveAvgPool2d(1) elif pool_type == 'maxpool': self.pool_layer = nn.AdaptiveMaxPool2d(1) elif pool_type == 'gempoolP': self.pool_layer = GeneralizedMeanPoolingP() elif pool_type == 'gempool': self.pool_layer = GeneralizedMeanPooling() elif pool_type == "avgmaxpool": self.pool_layer = AdaptiveAvgMaxPool2d() elif pool_type == 'clipavgpool': self.pool_layer = ClipGlobalAvgPool2d() elif pool_type == "identity": self.pool_layer = nn.Identity() elif pool_type == "flatten": self.pool_layer = Flatten() else: raise KeyError(f"{pool_type} is not supported!") # Classification layer if cls_type == 'linear': self.classifier = nn.Linear(feat_dim, num_classes, bias=False) elif cls_type == 'arcSoftmax': self.classifier = ArcSoftmax(cfg, feat_dim, num_classes) elif cls_type == 'circleSoftmax': self.classifier = CircleSoftmax(cfg, feat_dim, num_classes) elif cls_type == 'cosSoftmax': self.classifier = CosSoftmax(cfg, feat_dim, num_classes) else: raise KeyError(f"{cls_type} is not supported!") # fmt: on bottleneck = [] if with_bnneck: bottleneck.append(nn.BatchNorm1d(num_classes)) self.bottleneck = nn.Sequential(*bottleneck) self.bottleneck.apply(weights_init_kaiming) self.classifier.apply(weights_init_classifier) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ global_feat = self.pool_layer(features) global_feat = global_feat[..., 0, 0] classifier_name = self.classifier.__class__.__name__ # fmt: off if classifier_name == 'Linear': cls_outputs = self.classifier(global_feat) else: cls_outputs = self.classifier(global_feat, targets) # fmt: on cls_outputs = self.bottleneck(cls_outputs) if not self.training: cls_outputs = torch.sigmoid(cls_outputs) return cls_outputs else: return { "cls_outputs": cls_outputs, }