# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import logging import math import torch from torch import nn from torch.utils import model_zoo from fastreid.layers import ( IBN, SELayer, Non_local, get_norm, ) from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message from .build import BACKBONE_REGISTRY model_urls = { 18: 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 34: 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 50: 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 101: 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 152: 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } __all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, bn_norm, num_splits, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = get_norm(bn_norm, planes, num_splits) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = get_norm(bn_norm, planes, num_splits) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, bn_norm, num_splits, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) if with_ibn: self.bn1 = IBN(planes, bn_norm, num_splits) else: self.bn1 = get_norm(bn_norm, planes, num_splits) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = get_norm(bn_norm, planes, num_splits) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = get_norm(bn_norm, planes * 4, num_splits) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes * 4, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, last_stride, bn_norm, num_splits, with_ibn, with_se, with_nl, block, layers, non_layers): self.inplanes = 64 super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = get_norm(bn_norm, 64, num_splits) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, num_splits, with_ibn, with_se) self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, num_splits, with_ibn, with_se) self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn, with_se) self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, num_splits, with_se=with_se) self.random_init() if with_nl: self._build_nonlocal(layers, non_layers, bn_norm, num_splits) else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = [] def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", num_splits=1, with_ibn=False, with_se=False): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), get_norm(bn_norm, planes * block.expansion, num_splits), ) layers = [] if planes == 512: with_ibn = False layers.append(block(self.inplanes, planes, bn_norm, num_splits, with_ibn, with_se, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, bn_norm, num_splits, with_ibn, with_se)) return nn.Sequential(*layers) def _build_nonlocal(self, layers, non_layers, bn_norm, num_splits): self.NL_1 = nn.ModuleList( [Non_local(256, bn_norm, num_splits) for _ in range(non_layers[0])]) self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])]) self.NL_2 = nn.ModuleList( [Non_local(512, bn_norm, num_splits) for _ in range(non_layers[1])]) self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])]) self.NL_3 = nn.ModuleList( [Non_local(1024, bn_norm, num_splits) for _ in range(non_layers[2])]) self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])]) self.NL_4 = nn.ModuleList( [Non_local(2048, bn_norm, num_splits) for _ in range(non_layers[3])]) self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])]) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) NL1_counter = 0 if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1] for i in range(len(self.layer1)): x = self.layer1[i](x) if i == self.NL_1_idx[NL1_counter]: _, C, H, W = x.shape x = self.NL_1[NL1_counter](x) NL1_counter += 1 # Layer 2 NL2_counter = 0 if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1] for i in range(len(self.layer2)): x = self.layer2[i](x) if i == self.NL_2_idx[NL2_counter]: _, C, H, W = x.shape x = self.NL_2[NL2_counter](x) NL2_counter += 1 # Layer 3 NL3_counter = 0 if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1] for i in range(len(self.layer3)): x = self.layer3[i](x) if i == self.NL_3_idx[NL3_counter]: _, C, H, W = x.shape x = self.NL_3[NL3_counter](x) NL3_counter += 1 # Layer 4 NL4_counter = 0 if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1] for i in range(len(self.layer4)): x = self.layer4[i](x) if i == self.NL_4_idx[NL4_counter]: _, C, H, W = x.shape x = self.NL_4[NL4_counter](x) NL4_counter += 1 return x def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels nn.init.normal_(m.weight, 0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) @BACKBONE_REGISTRY.register() def build_resnet_backbone(cfg): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # fmt: off pretrain = cfg.MODEL.BACKBONE.PRETRAIN pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE bn_norm = cfg.MODEL.BACKBONE.NORM num_splits = cfg.MODEL.BACKBONE.NORM_SPLIT with_ibn = cfg.MODEL.BACKBONE.WITH_IBN with_se = cfg.MODEL.BACKBONE.WITH_SE with_nl = cfg.MODEL.BACKBONE.WITH_NL depth = cfg.MODEL.BACKBONE.DEPTH num_blocks_per_stage = {34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth] nl_layers_per_stage = {34: [3, 4, 6, 3], 50: [0, 2, 3, 0], 101: [0, 2, 9, 0]}[depth] block = {34: BasicBlock, 50: Bottleneck}[depth] model = ResNet(last_stride, bn_norm, num_splits, with_ibn, with_se, with_nl, block, num_blocks_per_stage, nl_layers_per_stage) if pretrain: if not with_ibn: # original resnet state_dict = model_zoo.load_url(model_urls[depth]) else: # ibn resnet state_dict = torch.load(pretrain_path)['state_dict'] # remove module in name new_state_dict = {} for k in state_dict: new_k = '.'.join(k.split('.')[1:]) if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape): new_state_dict[new_k] = state_dict[k] state_dict = new_state_dict incompatible = model.load_state_dict(state_dict, strict=False) logger = logging.getLogger(__name__) if incompatible.missing_keys: logger.info( get_missing_parameters_message(incompatible.missing_keys) ) if incompatible.unexpected_keys: logger.info( get_unexpected_parameters_message(incompatible.unexpected_keys) ) return model