#!/usr/bin/env python # encoding: utf-8 """ @author: sherlock @contact: sherlockliao01@gmail.com """ import logging import os import sys sys.path.append('.') from fastreid.config import get_cfg from fastreid.engine import DefaultTrainer, default_argument_parser, default_setup, launch from fastreid.utils.checkpoint import Checkpointer from fastreid.engine import hooks from partialreid import * class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_dir=None): data_loader, num_query = cls.build_test_loader(cfg, dataset_name) return data_loader, DsrEvaluator(cfg, num_query, output_dir) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_partialreid_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: logger = logging.getLogger("fastreid.trainer") cfg.defrost() cfg.MODEL.BACKBONE.PRETRAIN = False model = Trainer.build_model(cfg) Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model if cfg.TEST.PRECISE_BN.ENABLED and hooks.get_bn_modules(model): prebn_cfg = cfg.clone() prebn_cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN prebn_cfg.DATASETS.NAMES = tuple([cfg.TEST.PRECISE_BN.DATASET]) # set dataset name for PreciseBN logger.info("Prepare precise BN dataset") hooks.PreciseBN( # Run at the same freq as (but before) evaluation. model, # Build a new data loader to not affect training Trainer.build_train_loader(prebn_cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ).update_stats() res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )