# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import random from PIL import Image from torchvision import transforms as T class Random2DTranslation(object): """ With a probability, first increase image size to (1 + 1/8), and then perform random crop. Args: height (int): target height. width (int): target width. p (float): probability of performing this transformation. Default: 0.5. """ def __init__(self, height, width, p=0.5, interpolation=Image.BILINEAR): self.height = height self.width = width self.p = p self.interpolation = interpolation def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if random.random() < self.p: return img.resize((self.width, self.height), self.interpolation) new_width, new_height = int( round(self.width * 1.125)), int(round(self.height * 1.125)) resized_img = img.resize((new_width, new_height), self.interpolation) x_maxrange = new_width - self.width y_maxrange = new_height - self.height x1 = int(round(random.uniform(0, x_maxrange))) y1 = int(round(random.uniform(0, y_maxrange))) croped_img = resized_img.crop( (x1, y1, x1 + self.width, y1 + self.height)) return croped_img class TrainTransform(object): def __init__(self, h, w): self.h = h self.w = w def __call__(self, x): x = Random2DTranslation(self.h, self.w)(x) x = T.RandomHorizontalFlip()(x) x = T.ToTensor()(x) x = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(x) return x class TestTransform(object): def __init__(self, h, w): self.h = h self.w = w def __call__(self, x=None): x = T.Resize((self.h, self.w))(x) x = T.ToTensor()(x) x = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(x) return x