# Deployment This directory contains: 1. A script that converts a fastreid model to Caffe format. 2. An exmpale that loads a R50 baseline model in Caffe and run inference. ## Tutorial This is a tiny example for converting fastreid-baseline in `meta_arch` to Caffe model, if you want to convert more complex architecture, you need to customize more things. 1. Change `preprocess_image` in `fastreid/modeling/meta_arch/baseline.py` as below ```python def preprocess_image(self, batched_inputs): """ Normalize and batch the input images. """ # images = [x["images"] for x in batched_inputs] # images = batched_inputs["images"] images = batched_inputs images.sub_(self.pixel_mean).div_(self.pixel_std) return images ``` 2. Run `caffe_export.py` to get the converted Caffe model, ```bash python caffe_export.py --config-file "/export/home/lxy/fast-reid/logs/market1501/bagtricks_R50/config.yaml" --name "baseline_R50" --output "logs/caffe_model" --opts MODEL.WEIGHTS "/export/home/lxy/fast-reid/logs/market1501/bagtricks_R50/model_final.pth" ``` then you can check the Caffe model and prototxt in `logs/caffe_model`. 3. Change `prototxt` following next three steps: 1) Edit `max_pooling` in `baseline_R50.prototxt` like this ```prototxt layer { name: "max_pool1" type: "Pooling" bottom: "relu_blob1" top: "max_pool_blob1" pooling_param { pool: MAX kernel_size: 3 stride: 2 pad: 0 # 1 # ceil_mode: false } } ``` 2) Add `avg_pooling` right place in `baseline_R50.prototxt` ```prototxt layer { name: "avgpool1" type: "Pooling" bottom: "relu_blob49" top: "avgpool_blob1" pooling_param { pool: AVE global_pooling: true } } ``` 3) Change the last layer `top` name to `output` ```prototxt layer { name: "bn_scale54" type: "Scale" bottom: "batch_norm_blob54" top: "output" # bn_norm_blob54 scale_param { bias_term: true } } ``` 4. (optional) You can open [Netscope](https://ethereon.github.io/netscope/quickstart.html), then enter you network `prototxt` to visualize the network. 5. Run `caffe_inference.py` to save Caffe model features with input images ```bash python caffe_inference.py --model-def "logs/caffe_model/baseline_R50.prototxt" \ --model-weights "logs/caffe_model/baseline_R50.caffemodel" \ --input \ '/export/home/DATA/Market-1501-v15.09.15/bounding_box_test/1182_c5s3_015240_04.jpg' \ '/export/home/DATA/Market-1501-v15.09.15/bounding_box_test/1182_c6s3_038217_01.jpg' \ '/export/home/DATA/Market-1501-v15.09.15/bounding_box_test/1183_c5s3_006943_05.jpg' \ --output "caffe_R34_output" ``` 6. Run `demo/demo.py` to get fastreid model features with the same input images, then compute the cosine similarity of difference model features to verify if you convert Caffe model successfully. ## Acknowledgements Thank to [CPFLAME](https://github.com/CPFLAME), [gcong18](https://github.com/gcong18), [YuxiangJohn](https://github.com/YuxiangJohn) and [wiggin66](https://github.com/wiggin66) at JDAI Model Acceleration Group for help in PyTorch to Caffe model converting.