# encoding: utf-8 """ @author: l1aoxingyu @contact: sherlockliao01@gmail.com """ import logging import time import torch import torch.nn.functional as F from torch import nn from torch.nn.parallel import DistributedDataParallel from fastreid.engine import DefaultTrainer from fastreid.modeling.meta_arch import build_model from fastreid.utils.checkpoint import Checkpointer from .config import update_model_teacher_config class KDTrainer(DefaultTrainer): """ A knowledge distillation trainer for person reid of task. """ def __init__(self, cfg): """ Args: cfg (CfgNode): """ super().__init__(cfg) model_t = self.build_model_teacher(self.cfg) for param in model_t.parameters(): param.requires_grad = False logger = logging.getLogger('fastreid.' + __name__) # Load pre-trained teacher model logger.info("Loading teacher model ...") Checkpointer(model_t).load(cfg.MODEL.TEACHER_WEIGHTS) model_t.eval() self.model_t = model_t def run_step(self): """ Implement the moco training logic described above. """ assert self.model.training, "[KDTrainer] base model was changed to eval mode!" start = time.perf_counter() """ If your want to do something with the data, you can wrap the dataloader. """ data = next(self._data_loader_iter) data_time = time.perf_counter() - start outs = self.model(data) # Compute reid loss if isinstance(self.model, DistributedDataParallel): loss_dict = self.model.module.losses(outs) else: loss_dict = self.model.losses(outs) with torch.no_grad(): outs_t = self.model_t(data) q_logits = outs["outputs"]["pred_class_logits"] t_logits = outs_t["outputs"]["pred_class_logits"].detach() # k_logits = outs_k["outputs"]["pred_class_logits"].detach() loss_dict['loss_kl'] = self.distill_loss(q_logits, t_logits, t=16) losses = sum(loss_dict.values()) with torch.cuda.stream(torch.cuda.Stream()): metrics_dict = loss_dict metrics_dict["data_time"] = data_time self._write_metrics(metrics_dict) self._detect_anomaly(losses, loss_dict) """ If you need accumulate gradients or something similar, you can wrap the optimizer with your custom `zero_grad()` method. """ self.optimizer.zero_grad() losses.backward() """ If you need gradient clipping/scaling or other processing, you can wrap the optimizer with your custom `step()` method. """ self.optimizer.step() @classmethod def build_model_teacher(cls, cfg) -> nn.Module: cfg_t = update_model_teacher_config(cfg) model_t = build_model(cfg_t) return model_t @staticmethod def pkt_loss(output_net, target_net, eps=0.0000001): # Normalize each vector by its norm output_net_norm = torch.sqrt(torch.sum(output_net ** 2, dim=1, keepdim=True)) output_net = output_net / (output_net_norm + eps) output_net[output_net != output_net] = 0 target_net_norm = torch.sqrt(torch.sum(target_net ** 2, dim=1, keepdim=True)) target_net = target_net / (target_net_norm + eps) target_net[target_net != target_net] = 0 # Calculate the cosine similarity model_similarity = torch.mm(output_net, output_net.transpose(0, 1)) target_similarity = torch.mm(target_net, target_net.transpose(0, 1)) # Scale cosine similarity to 0..1 model_similarity = (model_similarity + 1.0) / 2.0 target_similarity = (target_similarity + 1.0) / 2.0 # Transform them into probabilities model_similarity = model_similarity / torch.sum(model_similarity, dim=1, keepdim=True) target_similarity = target_similarity / torch.sum(target_similarity, dim=1, keepdim=True) # Calculate the KL-divergence loss = torch.mean(target_similarity * torch.log((target_similarity + eps) / (model_similarity + eps))) return loss @staticmethod def distill_loss(y_s, y_t, t=4): p_s = F.log_softmax(y_s / t, dim=1) p_t = F.softmax(y_t / t, dim=1) loss = F.kl_div(p_s, p_t, reduction='sum') * (t ** 2) / y_s.shape[0] return loss