# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import torch from torch import nn class CenterLoss(nn.Module): """Center loss. Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016. Args: num_classes (int): number of classes. feat_dim (int): feature dimension. """ def __init__(self, num_classes=751, feat_dim=2048, use_gpu=True): super(CenterLoss, self).__init__() self.num_classes,self.feat_dim = num_classes, feat_dim if use_gpu: self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda()) else: self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim)) def forward(self, x, labels): """ Args: x: feature matrix with shape (batch_size, feat_dim). labels: ground truth labels with shape (num_classes). """ assert x.size(0) == labels.size(0), "features.size(0) is not equal to labels.size(0)" batch_size = x.size(0) distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \ torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t() distmat.addmm_(1, -2, x, self.centers.t()) classes = torch.arange(self.num_classes).long() classes = classes.to(x.device) labels = labels.unsqueeze(1).expand(batch_size, self.num_classes) mask = labels.eq(classes.expand(batch_size, self.num_classes)) dist = distmat * mask.float() loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size return loss