MODEL: META_ARCHITECTURE: Baseline BACKBONE: NAME: build_resnet_backbone NORM: BN DEPTH: 50x LAST_STRIDE: 1 FEAT_DIM: 2048 WITH_IBN: False PRETRAIN: True HEADS: NAME: EmbeddingHead NORM: BN WITH_BNNECK: True POOL_LAYER: GlobalAvgPool NECK_FEAT: before CLS_LAYER: Linear LOSSES: NAME: ("CrossEntropyLoss", "TripletLoss",) CE: EPSILON: 0.1 SCALE: 1. TRI: MARGIN: 0.3 HARD_MINING: True NORM_FEAT: False SCALE: 1. INPUT: SIZE_TRAIN: [ 256, 128 ] SIZE_TEST: [ 256, 128 ] REA: ENABLED: True PROB: 0.5 FLIP: ENABLED: True PADDING: ENABLED: True DATALOADER: SAMPLER_TRAIN: NaiveIdentitySampler NUM_INSTANCE: 4 NUM_WORKERS: 8 SOLVER: AMP: ENABLED: True OPT: Adam MAX_EPOCH: 120 BASE_LR: 0.00035 WEIGHT_DECAY: 0.0005 WEIGHT_DECAY_NORM: 0.0005 IMS_PER_BATCH: 64 SCHED: MultiStepLR STEPS: [ 40, 90 ] GAMMA: 0.1 WARMUP_FACTOR: 0.1 WARMUP_ITERS: 2000 CHECKPOINT_PERIOD: 30 TEST: EVAL_PERIOD: 30 IMS_PER_BATCH: 128 CUDNN_BENCHMARK: True