# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from glob import glob from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['SenseReID', ] @DATASET_REGISTRY.register() class SenseReID(ImageDataset): """Sense reid """ dataset_dir = "SenseReID" dataset_name = "senseid" def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir) required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] file_path_list = ['test_gallery', 'test_prob'] for file_path in file_path_list: sub_file = os.path.join(train_path, file_path) img_name = glob(os.path.join(sub_file, "*.jpg")) for img_path in img_name: img_name = img_path.split('/')[-1] img_info = img_name.split('_') pid = self.dataset_name + "_" + img_info[0] camid = self.dataset_name + "_" + img_info[1].split('.')[0] data.append([img_path, pid, camid]) return data