# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from .build import REID_HEADS_REGISTRY from ..model_utils import weights_init_kaiming from ...layers import * @REID_HEADS_REGISTRY.register() class ReductionHead(nn.Module): def __init__(self, cfg, in_feat, pool_layer=nn.AdaptiveAvgPool2d(1)): super().__init__() self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES reduction_dim = cfg.MODEL.HEADS.REDUCTION_DIM self.pool_layer = nn.Sequential( pool_layer, Flatten() ) self.bottleneck = nn.Sequential( nn.Linear(in_feat, reduction_dim, bias=False), NoBiasBatchNorm1d(reduction_dim), nn.LeakyReLU(0.1), nn.Dropout(0.5), ) self.bnneck = NoBiasBatchNorm1d(reduction_dim) self.bottleneck.apply(weights_init_kaiming) self.bnneck.apply(weights_init_kaiming) # identity classification layer if cfg.MODEL.HEADS.CLS_LAYER == 'linear': self.classifier = nn.Linear(reduction_dim, self._num_classes, bias=False) elif cfg.MODEL.HEADS.CLS_LAYER == 'arcface': self.classifier = Arcface(cfg, reduction_dim) elif cfg.MODEL.HEADS.CLS_LAYER == 'circle': self.classifier = Circle(cfg, reduction_dim) else: self.classifier = nn.Linear(reduction_dim, self._num_classes, bias=False) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ global_feat = self.pool_layer(features) global_feat = self.bottleneck(global_feat) bn_feat = self.bnneck(global_feat) if not self.training: return bn_feat # training try: pred_class_logits = self.classifier(bn_feat) except TypeError: pred_class_logits = self.classifier(bn_feat, targets) return pred_class_logits, bn_feat, targets