# AGW Baseline in FastReID Deep Learning for Person Re-identification: A Survey and Outlook. [arXiv](https://arxiv.org/abs/2001.04193) This is a re-implementation of [ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey) ## Highlights - A comprehensive survey with in-depth analysis for person Re-ID in recent years (2016-2019). - A new evaluation metric, namely mean Inverse Negative Penalty (mINP), which measures the ability to find the hardest correct match. ## Training To train a model, run ```bash CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file ``` For example, to launch a end-to-end baseline training on market1501 dataset on GPU#1, one should excute: ```bash CUDA_VISIBLE_DEVICES=1 python train_net.py --config-file='configs/AGW_market1501.yml' ``` ## Evaluation To evaluate the model in test set, run similarly: ```bash CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file --eval-only MODEL.WEIGHTS model.pth ``` ## Experimental Results ### Market1501 dataset | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW | ImageNet | 94.9% | 87.4% | 63.1% | ### DukeMTMC dataset | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW | ImageNet | 89.2% | 79.5% | 44.5% | ### MSMT17 dataset | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW | ImageNet | 76.8% | 53.7% | 12.2% | ``` @article{arxiv20reidsurvey, title={Deep Learning for Person Re-identification: A Survey and Outlook}, author={Ye, Mang and Shen, Jianbing and Lin, Gaojie and Xiang, Tao and Shao, Ling and Hoi, Steven C. H.}, journal={arXiv preprint arXiv:2001.04193}, year={2020}, } ```