# FastFace in FastReID This project provides a baseline for face recognition. ## Datasets Preparation | Function | Dataset | | --- | --- | | Train | MS-Celeb-1M | | Test-1 | LFW | | Test-2 | CPLFW | | Test-3 | CALFW | | Test-4 | VGG2_FP | | Test-5 | AgeDB-30 | | Test-6 | CFP_FF | | Test-7 | CFP-FP | We do data wrangling following [InsightFace_Pytorch](https://github.com/TreB1eN/InsightFace_Pytorch) instruction. ## Dependencies - bcolz ## Experiment Results We refer to [insightface_pytorch](https://github.com/TreB1eN/InsightFace_Pytorch) as our baseline methods, and on top of it, we use circle loss and cosine lr scheduler. | Method | LFW(%) | CFP-FF(%) | CFP-FP(%)| AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) | | :---: | :---: | :---: |:---: | :---: | :---: | :---: | :---: | | [insightface_pytorch](https://github.com/TreB1eN/InsightFace_Pytorch) | 99.52 | 99.62 | 95.04 | 96.22 | 95.57 | 91.07 | 93.86 | | ir50_se | 99.70 | 99.60 | 96.43 | 97.87 | 95.95 | 91.10 | 94.32 | | ir100_se | 99.65 | 99.69 | 97.10 | 97.98 | 96.00 | 91.53 | 94.62 |