# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter from ..losses.loss_utils import one_hot class Circle(nn.Module): def __init__(self, cfg, in_feat): super().__init__() self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES self._s = cfg.MODEL.HEADS.SCALE self._m = cfg.MODEL.HEADS.MARGIN self.weight = Parameter(torch.Tensor(self._num_classes, in_feat)) self.reset_parameters() def reset_parameters(self): nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, features, targets): sim_mat = F.linear(F.normalize(features), F.normalize(self.weight)) alpha_p = F.relu(-sim_mat.detach() + 1 + self._m) alpha_n = F.relu(sim_mat.detach() + self._m) delta_p = 1 - self._m delta_n = self._m s_p = self._s * alpha_p * (sim_mat - delta_p) s_n = self._s * alpha_n * (sim_mat - delta_n) targets = one_hot(targets, self._num_classes) pred_class_logits = targets * s_p + (1.0 - targets) * s_n return pred_class_logits