# encoding: utf-8 """ @author: l1aoxingyu @contact: sherlockliao01@gmail.com """ import torch import torch.nn.functional as F from torch import nn class GeneralizedMeanPooling(nn.Module): r"""Applies a 2D power-average adaptive pooling over an input signal composed of several input planes. The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)` - At p = infinity, one gets Max Pooling - At p = 1, one gets Average Pooling The output is of size H x W, for any input size. The number of output features is equal to the number of input planes. Args: output_size: the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H H and W can be either a ``int``, or ``None`` which means the size will be the same as that of the input. """ def __init__(self, norm, output_size=1, eps=1e-6): super(GeneralizedMeanPooling, self).__init__() assert norm > 0 self.p = float(norm) self.output_size = output_size self.eps = eps def forward(self, x): x = x.clamp(min=self.eps).pow(self.p) return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p) def __repr__(self): return self.__class__.__name__ + '(' \ + str(self.p) + ', ' \ + 'output_size=' + str(self.output_size) + ')' class GeneralizedMeanPoolingP(GeneralizedMeanPooling): """ Same, but norm is trainable """ def __init__(self, norm=3, output_size=1, eps=1e-6): super(GeneralizedMeanPoolingP, self).__init__(norm, output_size, eps) self.p = nn.Parameter(torch.ones(1) * norm)