# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import torch import torch.nn.functional as F from torch import nn from fastreid.utils import comm from .utils import concat_all_gather def circle_loss( embedding: torch.Tensor, targets: torch.Tensor, margin: float, alpha: float,) -> torch.Tensor: embedding = nn.functional.normalize(embedding, dim=1) if comm.get_world_size() > 1: all_embedding = concat_all_gather(embedding) all_targets = concat_all_gather(targets) else: all_embedding = embedding all_targets = targets dist_mat = torch.matmul(all_embedding, all_embedding.t()) N = dist_mat.size(0) is_pos = all_targets.view(N, 1).expand(N, N).eq(all_targets.view(N, 1).expand(N, N).t()).float() # Compute the mask which ignores the relevance score of the query to itself is_pos = is_pos - torch.eye(N, N, device=is_pos.device) is_neg = all_targets.view(N, 1).expand(N, N).ne(all_targets.view(N, 1).expand(N, N).t()) s_p = dist_mat * is_pos s_n = dist_mat * is_neg alpha_p = torch.clamp_min(-s_p.detach() + 1 + margin, min=0.) alpha_n = torch.clamp_min(s_n.detach() + margin, min=0.) delta_p = 1 - margin delta_n = margin logit_p = - alpha * alpha_p * (s_p - delta_p) logit_n = alpha * alpha_n * (s_n - delta_n) loss = nn.functional.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean() return loss