# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from glob import glob from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['CAVIARa', ] @DATASET_REGISTRY.register() class CAVIARa(ImageDataset): """CAVIARa """ dataset_dir = "CAVIARa" dataset_name = "caviara" def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir) required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] img_list = glob(os.path.join(train_path, "*.jpg")) for img_path in img_list: img_name = img_path.split('/')[-1] pid = self.dataset_name + "_" + img_name[:4] camid = self.dataset_name + "_cam0" data.append([img_path, pid, camid]) return data