#!/usr/bin/env bash gpu=0 # CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax.yml' \ # DATASETS.NAMES '("market1501",)' \ # DATASETS.TEST_NAMES 'market1501' \ # MODEL.BACKBONE 'resnet50' \ # MODEL.IBN 'False' \ # OUTPUT_DIR 'logs/2019.8.20/market/resnet_softmax' # CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax_triplet.yml' \ # DATASETS.NAMES '("market1501",)' \ # DATASETS.TEST_NAMES 'market1501' \ # MODEL.BACKBONE 'resnet50' \ # MODEL.IBN 'False' \ # OUTPUT_DIR 'logs/2019.8.20/market/resnet_softmax_triplet' # CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax.yml' \ # DATASETS.NAMES '("market1501",)' \ # DATASETS.TEST_NAMES 'market1501' \ # MODEL.BACKBONE 'resnet50' \ # MODEL.IBN 'True' \ # MODEL.PRETRAIN_PATH '/home/user01/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar' \ # OUTPUT_DIR 'logs/2019.8.20/market/resnet_ibn_softmax' # CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax_triplet.yml' \ # DATASETS.NAMES '("market1501",)' \ # DATASETS.TEST_NAMES 'market1501' \ # MODEL.BACKBONE 'resnet50' \ # MODEL.IBN 'True' \ # MODEL.PRETRAIN_PATH '/home/user01/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar' \ # OUTPUT_DIR 'logs/2019.8.20/market/resnet_ibn_softmax_triplet' # CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax.yml' \ # DATASETS.NAMES '("duke",)' \ # DATASETS.TEST_NAMES 'duke' \ # MODEL.BACKBONE 'resnet50' \ # MODEL.IBN 'False' \ # OUTPUT_DIR 'logs/2019.8.20/duke/resnet_softmax' # CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax_triplet.yml' \ # DATASETS.NAMES '("duke",)' \ # DATASETS.TEST_NAMES 'duke' \ # MODEL.BACKBONE 'resnet50' \ # MODEL.IBN 'False' \ # OUTPUT_DIR 'logs/2019.8.20/duke/resnet_softmax_triplet' CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax_triplet.yml' \ DATASETS.NAMES '("market1501",)' \ DATASETS.TEST_NAMES 'market1501' \ MODEL.BACKBONE 'resnet50' \ MODEL.WITH_IBN 'True' \ MODEL.PRETRAIN_PATH '/home/user01/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar' \ MODEL.STAGE_WITH_GCB '(False, False, False, False)' \ SOLVER.LOSSTYPE '("softmax_smooth", "triplet")' \ OUTPUT_DIR 'logs/2019.8.25/market/ibn_smooth' CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax_triplet.yml' \ DATASETS.NAMES '("market1501",)' \ DATASETS.TEST_NAMES 'market1501' \ MODEL.BACKBONE 'resnet50' \ MODEL.WITH_IBN 'True' \ MODEL.PRETRAIN_PATH '/home/user01/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar' \ MODEL.STAGE_WITH_GCB '(False, True, True, True)' \ SOLVER.LOSSTYPE '("softmax_smooth", "triplet")' \ OUTPUT_DIR 'logs/2019.8.25/market/ibn_gc_smooth' CUDA_VISIBLE_DEVICES=$gpu python tools/train.py -cfg='configs/softmax_triplet.yml' \ DATASETS.NAMES '("duke",)' \ DATASETS.TEST_NAMES 'duke' \ MODEL.BACKBONE 'resnet50' \ MODEL.WITH_IBN 'True' \ MODEL.PRETRAIN_PATH '/home/user01/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar' \ MODEL.STAGE_WITH_GCB '(False, False, False, False)' \ SOLVER.LOSSTYPE '("softmax_smooth", "triplet")' \ OUTPUT_DIR 'logs/2019.8.25/duke/ibn_smooth'