# Strong Baseline in FastReID ## Training To train a model, run ```bash CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file ``` For example, to launch a end-to-end baseline training on market1501 dataset with ibn-net on 4 GPUs, one should excute: ```bash CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file='configs/baseline_ibn_market1501.yml' ``` ## Experimental Results ### Market1501 dataset | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | BagTricks | ImageNet | 93.3% | 85.2% | | BagTricks + Ibn-a | ImageNet | 94.9% | 87.1% | | BagTricks + Ibn-a + softMargin | ImageNet | 94.8% | 87.7% | ### DukeMTMC dataset | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | BagTricks | ImageNet | 86.6% | 77.3% | | BagTricks + Ibn-a | ImageNet | 88.8% | 78.6% | | BagTricks + Ibn-a + softMargin | ImageNet | 89.1% | 78.9% | ### MSMT17 dataset | Method | Pretrained | Rank@1 | mAP | | :---: | :---: | :---: |:---: | | BagTricks | ImageNet | 72.0% | 48.6% | | BagTricks + Ibn-a | ImageNet | 77.7% | 54.6% | | BagTricks + Ibn-a + softMargin | ImageNet | 77.3% | 55.7% |