# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import torch import torch.nn.functional as F __all__ = ["pairwise_circleloss", "pairwise_cosface"] def pairwise_circleloss( embedding: torch.Tensor, targets: torch.Tensor, margin: float, gamma: float, ) -> torch.Tensor: embedding = F.normalize(embedding, dim=1) dist_mat = torch.matmul(embedding, embedding.t()) N = dist_mat.size(0) is_pos = targets.view(N, 1).expand(N, N).eq(targets.view(N, 1).expand(N, N).t()).float() is_neg = targets.view(N, 1).expand(N, N).ne(targets.view(N, 1).expand(N, N).t()).float() # Mask scores related to itself is_pos = is_pos - torch.eye(N, N, device=is_pos.device) s_p = dist_mat * is_pos s_n = dist_mat * is_neg alpha_p = torch.clamp_min(-s_p.detach() + 1 + margin, min=0.) alpha_n = torch.clamp_min(s_n.detach() + margin, min=0.) delta_p = 1 - margin delta_n = margin logit_p = - gamma * alpha_p * (s_p - delta_p) + (-99999999.) * (1 - is_pos) logit_n = gamma * alpha_n * (s_n - delta_n) + (-99999999.) * (1 - is_neg) loss = F.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean() return loss def pairwise_cosface( embedding: torch.Tensor, targets: torch.Tensor, margin: float, gamma: float, ) -> torch.Tensor: # Normalize embedding features embedding = F.normalize(embedding, dim=1) dist_mat = torch.matmul(embedding, embedding.t()) N = dist_mat.size(0) is_pos = targets.view(N, 1).expand(N, N).eq(targets.view(N, 1).expand(N, N).t()).float() is_neg = targets.view(N, 1).expand(N, N).ne(targets.view(N, 1).expand(N, N).t()).float() # Mask scores related to itself is_pos = is_pos - torch.eye(N, N, device=is_pos.device) s_p = dist_mat * is_pos s_n = dist_mat * is_neg logit_p = -gamma * s_p + (-99999999.) * (1 - is_pos) logit_n = gamma * (s_n + margin) + (-99999999.) * (1 - is_neg) loss = F.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean() return loss