# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from torch import nn from .build import REID_HEADS_REGISTRY from .. import losses as Loss from ..model_utils import weights_init_classifier from ...layers import Flatten @REID_HEADS_REGISTRY.register() class LinearHead(nn.Module): def __init__(self, cfg, in_feat, pool_layer=nn.AdaptiveAvgPool2d(1)): super().__init__() self._num_classes = cfg.MODEL.HEADS.NUM_CLASSES self.pool_layer = nn.Sequential( pool_layer, Flatten() ) self.classifier = nn.Linear(in_feat, self._num_classes, bias=False) self.classifier.apply(weights_init_classifier) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ global_feat = self.pool_layer(features) if not self.training: return global_feat # training pred_class_logits = self.classifier(global_feat) return pred_class_logits, global_feat @classmethod def losses(cls, cfg, pred_class_logits, global_features, gt_classes, prefix='') -> dict: loss_dict = {} for loss_name in cfg.MODEL.LOSSES.NAME: loss = getattr(Loss, loss_name)(cfg)(pred_class_logits, global_features, gt_classes) loss_dict.update(loss) # rename name_loss_dict = {} for name in loss_dict.keys(): name_loss_dict[prefix + name] = loss_dict[name] del loss_dict return name_loss_dict