# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from torch import nn import torch.nn.functional as F from .build import META_ARCH_REGISTRY from ..backbones import build_backbone from ..heads import build_reid_heads from ...layers import GeneralizedMeanPoolingP @META_ARCH_REGISTRY.register() class Baseline(nn.Module): def __init__(self, cfg): super().__init__() self._cfg = cfg # backbone self.backbone = build_backbone(cfg) # head if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool': pool_layer = nn.AdaptiveAvgPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool': pool_layer = GeneralizedMeanPoolingP() else: pool_layer = nn.Identity() self.heads = build_reid_heads(cfg, 2048, pool_layer) def forward(self, inputs): images = inputs["images"] targets = inputs["targets"] if not self.training: pred_feat = self.inference(images) return pred_feat, targets, inputs["camid"] # training features = self.backbone(images) # (bs, 2048, 16, 8) logits, global_feat = self.heads(features, targets) return logits, global_feat, targets def inference(self, images): assert not self.training features = self.backbone(images) # (bs, 2048, 16, 8) pred_feat = self.heads(features) return F.normalize(pred_feat) def losses(self, outputs): return self.heads.losses(self._cfg, *outputs)