# FastDistill in FastReID This project provides a strong distillation method for both embedding and classification training. The feature distillation comes from [overhaul-distillation](https://github.com/clovaai/overhaul-distillation/tree/master/ImageNet). ## Datasets Prepration - DukeMTMC-reID ## Train and Evaluation ```shell # teacher model training python3 projects/FastDistill/train_net.py \ --config-file projects/FastDistill/configs/sbs_r101ibn.yml \ --num-gpus 4 # loss distillation python3 projects/FastDistill/train_net.py \ --config-file projects/FastDistill/configs/kd-sbs_r101ibn-sbs_r34.yaml \ --num-gpus 4 \ MODEL.META_ARCHITECTURE Distiller KD.MODEL_CONFIG '("projects/FastDistill/logs/dukemtmc/r101_ibn/config.yaml",)' \ KD.MODEL_WEIGHTS '("projects/FastDistill/logs/dukemtmc/r101_ibn/model_best.pth",)' # loss+overhaul distillation python3 projects/FastDistill/train_net.py \ --config-file projects/FastDistill/configs/kd-sbs_r101ibn-sbs_r34.yaml \ --num-gpus 4 \ MODEL.META_ARCHITECTURE DistillerOverhaul KD.MODEL_CONFIG '("projects/FastDistill/logs/dukemtmc/r101_ibn/config.yaml",)' \ KD.MODEL_WEIGHTS '("projects/FastDistill/logs/dukemtmc/r101_ibn/model_best.pth",)' ``` ## Experimental Results ### Settings All the experiments are conducted with 4 V100 GPUs. ### DukeMTMC-reID | Model | Rank@1 | mAP | | --- | --- | --- | | R101_ibn (teacher) | 90.66 | 81.14 | | R34 (student) | 86.31 | 73.28 | | JS Div | 88.60 | 77.80 | | JS Div + Overhaul | 88.73 | 78.25 | ## Contact This project is conducted by [Xingyu Liao](https://github.com/L1aoXingyu) and [Guan'an Wang](https://wangguanan.github.io/) (guan.wang0706@gmail).