# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from glob import glob from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['PRAI', ] @DATASET_REGISTRY.register() class PRAI(ImageDataset): """PRAI """ dataset_dir = "PRAI-1581" dataset_name = 'prai' def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir, 'images') required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] img_paths = glob(os.path.join(train_path, "*.jpg")) for img_path in img_paths: split_path = img_path.split('/') img_info = split_path[-1].split('_') pid = self.dataset_name + "_" + img_info[0] camid = self.dataset_name + "_" + img_info[1] data.append([img_path, pid, camid]) return data