# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ from collections import namedtuple from torch import nn from fastreid.layers import get_norm, SELayer from fastreid.modeling.backbones import BACKBONE_REGISTRY def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) class bottleneck_IR(nn.Module): def __init__(self, in_channel, depth, bn_norm, stride, with_se=False): super(bottleneck_IR, self).__init__() if in_channel == depth: self.shortcut_layer = nn.MaxPool2d(1, stride) else: self.shortcut_layer = nn.Sequential( nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False), get_norm(bn_norm, depth)) self.res_layer = nn.Sequential( get_norm(bn_norm, in_channel), nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), nn.PReLU(depth), nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False), get_norm(bn_norm, depth), SELayer(depth, 16) if with_se else nn.Identity() ) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class Bottleneck(namedtuple("Block", ["in_channel", "depth", "bn_norm", "stride", "with_se"])): """A named tuple describing a ResNet block.""" def get_block(in_channel, depth, bn_norm, num_units, with_se, stride=2): return [Bottleneck(in_channel, depth, bn_norm, stride, with_se)] + \ [Bottleneck(depth, depth, bn_norm, 1, with_se) for _ in range(num_units - 1)] def get_blocks(bn_norm, with_se, num_layers): if num_layers == "50x": blocks = [ get_block(in_channel=64, depth=64, bn_norm=bn_norm, num_units=3, with_se=with_se), get_block(in_channel=64, depth=128, bn_norm=bn_norm, num_units=4, with_se=with_se), get_block(in_channel=128, depth=256, bn_norm=bn_norm, num_units=14, with_se=with_se), get_block(in_channel=256, depth=512, bn_norm=bn_norm, num_units=3, with_se=with_se) ] elif num_layers == "100x": blocks = [ get_block(in_channel=64, depth=64, bn_norm=bn_norm, num_units=3, with_se=with_se), get_block(in_channel=64, depth=128, bn_norm=bn_norm, num_units=13, with_se=with_se), get_block(in_channel=128, depth=256, bn_norm=bn_norm, num_units=30, with_se=with_se), get_block(in_channel=256, depth=512, bn_norm=bn_norm, num_units=3, with_se=with_se) ] elif num_layers == "152x": blocks = [ get_block(in_channel=64, depth=64, bn_norm=bn_norm, num_units=3, with_se=with_se), get_block(in_channel=64, depth=128, bn_norm=bn_norm, num_units=8, with_se=with_se), get_block(in_channel=128, depth=256, bn_norm=bn_norm, num_units=36, with_se=with_se), get_block(in_channel=256, depth=512, bn_norm=bn_norm, num_units=3, with_se=with_se) ] return blocks class ResNetIR(nn.Module): def __init__(self, num_layers, bn_norm, drop_ratio, with_se): super(ResNetIR, self).__init__() assert num_layers in ["50x", "100x", "152x"], "num_layers should be 50,100, or 152" blocks = get_blocks(bn_norm, with_se, num_layers) self.input_layer = nn.Sequential(nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False), get_norm(bn_norm, 64), nn.PReLU(64)) self.output_layer = nn.Sequential(get_norm(bn_norm, 512), nn.Dropout(drop_ratio)) modules = [] for block in blocks: for bottleneck in block: modules.append( bottleneck_IR(bottleneck.in_channel, bottleneck.depth, bottleneck.bn_norm, bottleneck.stride, bottleneck.with_se)) self.body = nn.Sequential(*modules) def forward(self, x): x = self.input_layer(x) x = self.body(x) x = self.output_layer(x) return x @BACKBONE_REGISTRY.register() def build_resnetIR_backbone(cfg): """ Create a ResNetIR instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # fmt: off bn_norm = cfg.MODEL.BACKBONE.NORM with_se = cfg.MODEL.BACKBONE.WITH_SE depth = cfg.MODEL.BACKBONE.DEPTH # fmt: on model = ResNetIR(depth, bn_norm, 0.5, with_se) return model