# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from fastreid.layers import * from fastreid.utils.weight_init import weights_init_kaiming, weights_init_classifier from .build import REID_HEADS_REGISTRY @REID_HEADS_REGISTRY.register() class ReductionHead(nn.Module): def __init__(self, cfg, in_feat, num_classes, pool_layer): super().__init__() self._cfg = cfg reduction_dim = cfg.MODEL.HEADS.REDUCTION_DIM self.neck_feat = cfg.MODEL.HEADS.NECK_FEAT self.pool_layer = pool_layer self.bottleneck = nn.Sequential( nn.Conv2d(in_feat, reduction_dim, 1, 1, bias=False), get_norm(cfg.MODEL.HEADS.NORM, reduction_dim, cfg.MODEL.HEADS.NORM_SPLIT), nn.LeakyReLU(0.1, inplace=True), ) self.bnneck = get_norm(cfg.MODEL.HEADS.NORM, reduction_dim, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True) self.bottleneck.apply(weights_init_kaiming) self.bnneck.apply(weights_init_kaiming) # identity classification layer cls_type = cfg.MODEL.HEADS.CLS_LAYER if cls_type == 'linear': self.classifier = nn.Linear(in_feat, num_classes, bias=False) elif cls_type == 'arcSoftmax': self.classifier = ArcSoftmax(cfg, in_feat, num_classes) elif cls_type == 'circleSoftmax': self.classifier = CircleSoftmax(cfg, in_feat, num_classes) else: raise KeyError(f"{cls_type} is invalid, please choose from " f"'linear', 'arcSoftmax' and 'circleSoftmax'.") self.classifier.apply(weights_init_classifier) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ features = self.pool_layer(features) global_feat = self.bottleneck(features) bn_feat = self.bnneck(global_feat) bn_feat = bn_feat[..., 0, 0] # Evaluation if not self.training: return bn_feat # Training try: cls_outputs = self.classifier(bn_feat) except TypeError: cls_outputs = self.classifier(bn_feat, targets) pred_class_logits = F.linear(bn_feat, self.classifier.weight) if self.neck_feat == "before": feat = global_feat[..., 0, 0] elif self.neck_feat == "after": feat = bn_feat else: raise KeyError("MODEL.HEADS.NECK_FEAT value is invalid, must choose from ('after' & 'before')") return cls_outputs, pred_class_logits, feat