from .config import CfgNode as CN # ----------------------------------------------------------------------------- # Convention about Training / Test specific parameters # ----------------------------------------------------------------------------- # Whenever an argument can be either used for training or for testing, the # corresponding name will be post-fixed by a _TRAIN for a training parameter, # or _TEST for a test-specific parameter. # For example, the number of images during training will be # IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be # IMAGES_PER_BATCH_TEST # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CN() # ----------------------------------------------------------------------------- # MODEL # ----------------------------------------------------------------------------- _C.MODEL = CN() _C.MODEL.DEVICE = "cuda" _C.MODEL.META_ARCHITECTURE = "Baseline" _C.MODEL.FREEZE_LAYERS = [''] # MoCo memory size _C.MODEL.QUEUE_SIZE = 8192 # ---------------------------------------------------------------------------- # # Backbone options # ---------------------------------------------------------------------------- # _C.MODEL.BACKBONE = CN() _C.MODEL.BACKBONE.NAME = "build_resnet_backbone" _C.MODEL.BACKBONE.DEPTH = "50x" _C.MODEL.BACKBONE.LAST_STRIDE = 1 # Backbone feature dimension _C.MODEL.BACKBONE.FEAT_DIM = 2048 # Normalization method for the convolution layers. _C.MODEL.BACKBONE.NORM = "BN" # If use IBN block in backbone _C.MODEL.BACKBONE.WITH_IBN = False # If use SE block in backbone _C.MODEL.BACKBONE.WITH_SE = False # If use Non-local block in backbone _C.MODEL.BACKBONE.WITH_NL = False # If use ImageNet pretrain model _C.MODEL.BACKBONE.PRETRAIN = False # Pretrain model path _C.MODEL.BACKBONE.PRETRAIN_PATH = '' # ---------------------------------------------------------------------------- # # REID HEADS options # ---------------------------------------------------------------------------- # _C.MODEL.HEADS = CN() _C.MODEL.HEADS.NAME = "EmbeddingHead" # Normalization method for the convolution layers. _C.MODEL.HEADS.NORM = "BN" # Number of identity _C.MODEL.HEADS.NUM_CLASSES = 0 # Embedding dimension in head _C.MODEL.HEADS.EMBEDDING_DIM = 0 # If use BNneck in embedding _C.MODEL.HEADS.WITH_BNNECK = False # Triplet feature using feature before(after) bnneck _C.MODEL.HEADS.NECK_FEAT = "before" # options: before, after # Pooling layer type _C.MODEL.HEADS.POOL_LAYER = "GlobalAvgPool" # Classification layer type _C.MODEL.HEADS.CLS_LAYER = "Linear" # ArcSoftmax" or "CircleSoftmax" # Margin and Scale for margin-based classification layer _C.MODEL.HEADS.MARGIN = 0.15 _C.MODEL.HEADS.SCALE = 128 # ---------------------------------------------------------------------------- # # REID LOSSES options # ---------------------------------------------------------------------------- # _C.MODEL.LOSSES = CN() _C.MODEL.LOSSES.NAME = ("CrossEntropyLoss",) # Cross Entropy Loss options _C.MODEL.LOSSES.CE = CN() # if epsilon == 0, it means no label smooth regularization, # if epsilon == -1, it means adaptive label smooth regularization _C.MODEL.LOSSES.CE.EPSILON = 0.0 _C.MODEL.LOSSES.CE.ALPHA = 0.2 _C.MODEL.LOSSES.CE.SCALE = 1.0 # Focal Loss options _C.MODEL.LOSSES.FL = CN() _C.MODEL.LOSSES.FL.ALPHA = 0.25 _C.MODEL.LOSSES.FL.GAMMA = 2 _C.MODEL.LOSSES.FL.SCALE = 1.0 # Triplet Loss options _C.MODEL.LOSSES.TRI = CN() _C.MODEL.LOSSES.TRI.MARGIN = 0.3 _C.MODEL.LOSSES.TRI.NORM_FEAT = False _C.MODEL.LOSSES.TRI.HARD_MINING = False _C.MODEL.LOSSES.TRI.SCALE = 1.0 # Circle Loss options _C.MODEL.LOSSES.CIRCLE = CN() _C.MODEL.LOSSES.CIRCLE.MARGIN = 0.25 _C.MODEL.LOSSES.CIRCLE.GAMMA = 128 _C.MODEL.LOSSES.CIRCLE.SCALE = 1.0 # Cosface Loss options _C.MODEL.LOSSES.COSFACE = CN() _C.MODEL.LOSSES.COSFACE.MARGIN = 0.25 _C.MODEL.LOSSES.COSFACE.GAMMA = 128 _C.MODEL.LOSSES.COSFACE.SCALE = 1.0 # Path to a checkpoint file to be loaded to the model. You can find available models in the model zoo. _C.MODEL.WEIGHTS = "" # Values to be used for image normalization _C.MODEL.PIXEL_MEAN = [0.485*255, 0.456*255, 0.406*255] # Values to be used for image normalization _C.MODEL.PIXEL_STD = [0.229*255, 0.224*255, 0.225*255] # ----------------------------------------------------------------------------- # KNOWLEDGE DISTILLATION # ----------------------------------------------------------------------------- _C.KD = CN() _C.KD.MODEL_CONFIG = ['',] _C.KD.MODEL_WEIGHTS = ['',] # ----------------------------------------------------------------------------- # INPUT # ----------------------------------------------------------------------------- _C.INPUT = CN() # Size of the image during training _C.INPUT.SIZE_TRAIN = [256, 128] # Size of the image during test _C.INPUT.SIZE_TEST = [256, 128] # `True` if cropping is used for data augmentation during training _C.INPUT.CROP = CN({"ENABLED": False}) # Size of the image cropped _C.INPUT.CROP.SIZE = [224, 224] # Size of the origin size cropped _C.INPUT.CROP.SCALE = [0.16, 1] # Aspect ratio of the origin aspect ratio cropped _C.INPUT.CROP.RATIO = [3./4., 4./3.] # Random probability for image horizontal flip _C.INPUT.FLIP = CN({"ENABLED": False}) _C.INPUT.FLIP.PROB = 0.5 # Value of padding size _C.INPUT.PADDING = CN({"ENABLED": False}) _C.INPUT.PADDING.MODE = 'constant' _C.INPUT.PADDING.SIZE = 10 # Random color jitter _C.INPUT.CJ = CN({"ENABLED": False}) _C.INPUT.CJ.PROB = 0.5 _C.INPUT.CJ.BRIGHTNESS = 0.15 _C.INPUT.CJ.CONTRAST = 0.15 _C.INPUT.CJ.SATURATION = 0.1 _C.INPUT.CJ.HUE = 0.1 # Random Affine _C.INPUT.AFFINE = CN({"ENABLED": False}) # Auto augmentation _C.INPUT.AUTOAUG = CN({"ENABLED": False}) _C.INPUT.AUTOAUG.PROB = 0.0 # Augmix augmentation _C.INPUT.AUGMIX = CN({"ENABLED": False}) _C.INPUT.AUGMIX.PROB = 0.0 # Random Erasing _C.INPUT.REA = CN({"ENABLED": False}) _C.INPUT.REA.PROB = 0.5 _C.INPUT.REA.VALUE = [0.485*255, 0.456*255, 0.406*255] # Random Patch _C.INPUT.RPT = CN({"ENABLED": False}) _C.INPUT.RPT.PROB = 0.5 # ----------------------------------------------------------------------------- # Dataset # ----------------------------------------------------------------------------- _C.DATASETS = CN() # List of the dataset names for training _C.DATASETS.NAMES = ("Market1501",) # List of the dataset names for testing _C.DATASETS.TESTS = ("Market1501",) # Combine trainset and testset joint training _C.DATASETS.COMBINEALL = False # ----------------------------------------------------------------------------- # DataLoader # ----------------------------------------------------------------------------- _C.DATALOADER = CN() # Options: TrainingSampler, NaiveIdentitySampler, BalancedIdentitySampler _C.DATALOADER.SAMPLER_TRAIN = "TrainingSampler" # Number of instance for each person _C.DATALOADER.NUM_INSTANCE = 4 _C.DATALOADER.NUM_WORKERS = 8 # ---------------------------------------------------------------------------- # # Solver # ---------------------------------------------------------------------------- # _C.SOLVER = CN() # AUTOMATIC MIXED PRECISION _C.SOLVER.AMP = CN({"ENABLED": False}) # Optimizer _C.SOLVER.OPT = "Adam" _C.SOLVER.MAX_EPOCH = 120 _C.SOLVER.BASE_LR = 3e-4 _C.SOLVER.BIAS_LR_FACTOR = 1. _C.SOLVER.HEADS_LR_FACTOR = 1. _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.NESTEROV = False _C.SOLVER.WEIGHT_DECAY = 0.0005 _C.SOLVER.WEIGHT_DECAY_BIAS = 0. # Multi-step learning rate options _C.SOLVER.SCHED = "MultiStepLR" _C.SOLVER.DELAY_EPOCHS = 0 _C.SOLVER.GAMMA = 0.1 _C.SOLVER.STEPS = [30, 55] # Cosine annealing learning rate options _C.SOLVER.ETA_MIN_LR = 1e-7 # Warmup options _C.SOLVER.WARMUP_FACTOR = 0.1 _C.SOLVER.WARMUP_ITERS = 1000 _C.SOLVER.WARMUP_METHOD = "linear" # Backbone freeze iters _C.SOLVER.FREEZE_ITERS = 0 # FC freeze iters _C.SOLVER.FREEZE_FC_ITERS = 0 # SWA options # _C.SOLVER.SWA = CN() # _C.SOLVER.SWA.ENABLED = False # _C.SOLVER.SWA.ITER = 10 # _C.SOLVER.SWA.PERIOD = 2 # _C.SOLVER.SWA.LR_FACTOR = 10. # _C.SOLVER.SWA.ETA_MIN_LR = 3.5e-6 # _C.SOLVER.SWA.LR_SCHED = False _C.SOLVER.CHECKPOINT_PERIOD = 20 # Number of images per batch across all machines. # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.SOLVER.IMS_PER_BATCH = 64 # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.TEST = CN() _C.TEST.EVAL_PERIOD = 20 # Number of images per batch in one process. _C.TEST.IMS_PER_BATCH = 64 _C.TEST.METRIC = "cosine" _C.TEST.ROC = CN({"ENABLED": False}) _C.TEST.FLIP = CN({"ENABLED": False}) # Average query expansion _C.TEST.AQE = CN({"ENABLED": False}) _C.TEST.AQE.ALPHA = 3.0 _C.TEST.AQE.QE_TIME = 1 _C.TEST.AQE.QE_K = 5 # Re-rank _C.TEST.RERANK = CN({"ENABLED": False}) _C.TEST.RERANK.K1 = 20 _C.TEST.RERANK.K2 = 6 _C.TEST.RERANK.LAMBDA = 0.3 # Precise batchnorm _C.TEST.PRECISE_BN = CN({"ENABLED": False}) _C.TEST.PRECISE_BN.DATASET = 'Market1501' _C.TEST.PRECISE_BN.NUM_ITER = 300 # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # _C.OUTPUT_DIR = "logs/" # Benchmark different cudnn algorithms. # If input images have very different sizes, this option will have large overhead # for about 10k iterations. It usually hurts total time, but can benefit for certain models. # If input images have the same or similar sizes, benchmark is often helpful. _C.CUDNN_BENCHMARK = False