#!/usr/bin/env python # encoding: utf-8 """ @author: sherlock @contact: sherlockliao01@gmail.com """ import json import logging import sys import os sys.path.append('.') from fastreid.config import get_cfg from fastreid.engine import default_argument_parser, default_setup, launch from fastreid.data.build import build_reid_train_loader, build_reid_test_loader from fastreid.evaluation.clas_evaluator import ClasEvaluator from fastreid.utils.checkpoint import Checkpointer, PathManager from fastreid.utils import comm from fastreid.engine import DefaultTrainer from fastclas import * class Trainer(DefaultTrainer): @classmethod def build_train_loader(cls, cfg): """ Returns: iterable It now calls :func:`fastreid.data.build_reid_train_loader`. Overwrite it if you'd like a different data loader. """ logger = logging.getLogger("fastreid.clas_dataset") logger.info("Prepare training set") data_loader = build_reid_train_loader(cfg, Dataset=ClasDataset) # Save index to class dictionary output_dir = cfg.OUTPUT_DIR if comm.is_main_process() and output_dir: path = os.path.join(output_dir, "idx2class.json") with PathManager.open(path, "w") as f: json.dump(data_loader.dataset.idx_to_class, f) return data_loader @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable It now calls :func:`fastreid.data.build_reid_test_loader`. Overwrite it if you'd like a different data loader. """ return build_reid_test_loader(cfg, dataset_name, Dataset=ClasDataset) @classmethod def build_evaluator(cls, cfg, dataset_name, output_dir=None): data_loader, _ = cls.build_test_loader(cfg, dataset_name) return data_loader, ClasEvaluator(cfg, output_dir) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: cfg.defrost() cfg.MODEL.BACKBONE.PRETRAIN = False model = Trainer.build_model(cfg) Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )