# FastReID Model Zoo and Baselines ## Introduction **BoT**: Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral. **AGW**: This is a re-implementation of [ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey) **SBS**: stronger baseline on top of BoT with tricks: 1. Non-local block 2. GeM pooling 3. Circle loss 4. Freeze backbone training 5. Cutout data augmentation & Auto Augmentation 6. Cosine annealing learning rate decay 7. Soft margin triplet loss ### Market1501 Baselines **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50) | ImageNet | 94.1% | 85.9% | 59.3% | | BoT(R50-ibn) | ImageNet | - | - | - | | BoT(S50) | ImageNet | - | - | - | | BoT(R101-ibn) | ImageNet| - | - | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW(R50) | ImageNet | 94.9% | 87.4% | 63.1% | | AGW(R50-ibn) | ImageNet | - | - | - | | AGW(R101-ibn) | ImageNet | - | - | - | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | SBS(R50) | ImageNet | - | - | - | | SBS(R50-ibn) | ImageNet | 95.5% | 88.7% | 66.4% | | SBS(S50) | ImageNet | - | - | - | | SBS(R101-ibn) | ImageNet | - | - | - | ### DukeMTMC Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50) | ImageNet | 86.1% | 75.9% | 38.7% | | BoT(R50-ibn) | ImageNet | 89.0% | 78.8% | 43.6% | | BoT(S50) | ImageNet | - | - | - | | BoT(R101-ibn) | ImageNet| - | - | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW(R50) | ImageNet | 88.9% | 79.1% | 43.2% | | AGW(R50-ibn) | ImageNet | - | - | - | | AGW(R101-ibn) | ImageNet | - | - | - | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | SBS(R50) | ImageNet | - | - | - | | SBS(R50-ibn) | ImageNet | 91.3% | 81.6% | 47.6% | | SBS(S50) | ImageNet | - | - | - | | SBS(R101-ibn) | ImageNet | - | - | - | ### MSMT17 Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50) | ImageNet | 70.4% | 47.5% | 9.6% | | BoT(R50-ibn) | ImageNet | 76.9% | 55.0% | 13.5% | | BoT(S50) | ImageNet | - | - | - | | BoT(R101-ibn) | ImageNet| - | - | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | AGW(R50) | ImageNet | 75.6% | 52.6% | 11.9% | | AGW(R50-ibn) | ImageNet | - | - | - | | AGW(R101-ibn) | ImageNet | - | - | - | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | SBS(R50) | ImageNet | - | - | - | | SBS(R50-ibn) | ImageNet | 84.2% | 61.5% | 15.7% | | SBS(S50) | ImageNet | - | - | - | | SBS(R101-ibn) | ImageNet | - | - | - | ### VeRi Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | BoT(R50-ibn) | ImageNet | 96.1% | 78.8% | 43.8% | ### VehicleID Baseline **BoT**: Method: BoT(R50-ibn) | Testset size | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | Small(800) | ImageNet | 95.5% | 89.5% | 77.0% | | Medium(1600) | ImageNet | 93.8% | 85.6% | 69.4% | | Large(2400) | ImageNet | 93.3% | 84.1% | 67.4% | ### VERI-Wild Baseline **BoT**: Method: BoT(R50-ibn) | Testset size | Pretrained | Rank@1 | mAP | mINP | | :---: | :---: | :---: |:---: | :---: | | Small(3000) | ImageNet | 96.4% | 87.7% | 69.2% | | Medium(5000) | ImageNet | 95.1% | 83.5% | 61.2% | | Large(10000) | ImageNet | 92.5% | 77.3% | 49.8% |