# encoding: utf-8 """ @author: l1aoxingyu @contact: sherlockliao01@gmail.com """ import argparse import os import sys from os import mkdir import torch from torch.backends import cudnn sys.path.append('.') from config import cfg from data import get_data_bunch from engine.inference import inference from utils.logger import setup_logger from modeling import build_model def main(): parser = argparse.ArgumentParser(description="ReID Baseline Inference") parser.add_argument('-cfg', "--config_file", default="", help="path to config file", type=str ) parser.add_argument("opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 if args.config_file != "": cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() if not os.path.exists(cfg.OUTPUT_DIR): os.makedirs(cfg.OUTPUT_DIR) logger = setup_logger("reid_baseline", cfg.OUTPUT_DIR, 0) logger.info("Using {} GPUS".format(num_gpus)) logger.info(args) if args.config_file != "": logger.info("Loaded configuration file {}".format(args.config_file)) logger.info("Running with config:\n{}".format(cfg)) cudnn.benchmark = True data_bunch, test_labels, num_query = get_data_bunch(cfg) model = build_model(cfg, data_bunch.c) state_dict = torch.load(cfg.TEST.WEIGHT) model.load_params_wo_fc(state_dict['model']) model.cuda() # model = torch.jit.load("/export/home/lxy/reid_baseline/pcb_model_v0.2.pt") inference(cfg, model, data_bunch, test_labels, num_query) if __name__ == '__main__': main()