fast-reid/demo/demo.py

98 lines
2.5 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import argparse
import glob
import os
import sys
import torch.nn.functional as F
import cv2
import numpy as np
import tqdm
from torch.backends import cudnn
sys.path.append('.')
from fastreid.config import get_cfg
from fastreid.utils.logger import setup_logger
from fastreid.utils.file_io import PathManager
from predictor import FeatureExtractionDemo
# import some modules added in project like this below
# sys.path.append("projects/PartialReID")
# from partialreid import *
cudnn.benchmark = True
setup_logger(name="fastreid")
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
# add_partialreid_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Feature extraction with reid models")
parser.add_argument(
"--config-file",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--parallel",
action='store_true',
help='If use multiprocess for feature extraction.'
)
parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
default='demo_output',
help='path to save features'
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
return parser
def postprocess(features):
# Normalize feature to compute cosine distance
features = F.normalize(features)
features = features.cpu().data.numpy()
return features
if __name__ == '__main__':
args = get_parser().parse_args()
cfg = setup_cfg(args)
demo = FeatureExtractionDemo(cfg, parallel=args.parallel)
PathManager.mkdirs(args.output)
if args.input:
if PathManager.isdir(args.input[0]):
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input):
img = cv2.imread(path)
feat = demo.run_on_image(img)
feat = postprocess(feat)
np.save(os.path.join(args.output, os.path.basename(path).split('.')[0] + '.npy'), feat)