fast-reid/projects/FastFace
liaoxingyu 7e652fea2a feat: Add contiguous parameters support
Support contiguous parameters to train faster. It can split parameters into different contiguous groups by freeze_layer, lr and weight decay.
2021-07-05 11:10:37 +08:00
..
configs Support amp and resume training in fastface 2021-05-31 17:30:43 +08:00
fastface feat: Add contiguous parameters support 2021-07-05 11:10:37 +08:00
README.md update fastreid v1.2 2021-04-02 21:33:13 +08:00
train_net.py Support amp and resume training in fastface 2021-05-31 17:30:43 +08:00

README.md

FastFace in FastReID

This project provides a baseline for face recognition.

Datasets Preparation

Function Dataset
Train MS-Celeb-1M
Test-1 LFW
Test-2 CPLFW
Test-3 CALFW
Test-4 VGG2_FP
Test-5 AgeDB-30
Test-6 CFP_FF
Test-7 CFP-FP

We do data wrangling following InsightFace_Pytorch instruction.

Dependencies

  • bcolz
  • mxnet (optional) if you want to read .rec directly

Experiment Results

We refer to insightface_pytorch as our baseline methods, and on top of it, we use circle loss and cosine lr scheduler.

Method LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
insightface_pytorch 99.52 99.62 95.04 96.22 95.57 91.07 93.86
ir50_se 99.70 99.60 96.43 97.87 95.95 91.10 94.32
ir100_se 99.65 99.69 97.10 97.98 96.00 91.53 94.62
ir50_se_0.1
ir100_se_0.1