mirror of https://github.com/JDAI-CV/fast-reid.git
Support contiguous parameters to train faster. It can split parameters into different contiguous groups by freeze_layer, lr and weight decay. |
||
---|---|---|
.. | ||
configs | ||
fastface | ||
README.md | ||
train_net.py |
README.md
FastFace in FastReID
This project provides a baseline for face recognition.
Datasets Preparation
Function | Dataset |
---|---|
Train | MS-Celeb-1M |
Test-1 | LFW |
Test-2 | CPLFW |
Test-3 | CALFW |
Test-4 | VGG2_FP |
Test-5 | AgeDB-30 |
Test-6 | CFP_FF |
Test-7 | CFP-FP |
We do data wrangling following InsightFace_Pytorch instruction.
Dependencies
- bcolz
- mxnet (optional) if you want to read
.rec
directly
Experiment Results
We refer to insightface_pytorch as our baseline methods, and on top of it, we use circle loss and cosine lr scheduler.
Method | LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|---|
insightface_pytorch | 99.52 | 99.62 | 95.04 | 96.22 | 95.57 | 91.07 | 93.86 |
ir50_se | 99.70 | 99.60 | 96.43 | 97.87 | 95.95 | 91.10 | 94.32 |
ir100_se | 99.65 | 99.69 | 97.10 | 97.98 | 96.00 | 91.53 | 94.62 |
ir50_se_0.1 | |||||||
ir100_se_0.1 |