fast-reid/projects/NAIC20/train_net.py

87 lines
2.1 KiB
Python

# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
import logging
import sys
sys.path.append('.')
from fastreid.config import get_cfg
from fastreid.engine import default_argument_parser, default_setup, launch
from fastreid.utils.checkpoint import Checkpointer
from fastreid.engine import DefaultTrainer
from fastreid.data import build_reid_train_loader
from naic import *
class Trainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):
logger = logging.getLogger("fastreid.naic20")
logger.info("Prepare NAIC20 competition trainset")
return build_reid_train_loader(cfg, rm_lt=cfg.DATASETS.RM_LT)
class Committer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_dir=None):
data_loader, num_query = cls.build_test_loader(cfg, dataset_name)
return data_loader, NaicEvaluator(cfg, num_query, output_dir)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_naic_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
cfg.defrost()
cfg.MODEL.BACKBONE.PRETRAIN = False
model = Trainer.build_model(cfg)
Checkpointer(model, save_dir=cfg.OUTPUT_DIR).load(cfg.MODEL.WEIGHTS) # load trained model
if args.commit:
res = Committer.test(cfg, model)
else:
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--commit", action="store_true", help="submission testing results")
args = parser.parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)