mirror of https://github.com/JDAI-CV/fast-reid.git
84 lines
2.3 KiB
Python
84 lines
2.3 KiB
Python
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
"""
|
|
@author: sherlock
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
|
|
sys.path.append('.')
|
|
|
|
from fastreid.config import get_cfg
|
|
from fastreid.engine import DefaultTrainer, default_argument_parser, default_setup, launch
|
|
from fastreid.utils.checkpoint import Checkpointer
|
|
from fastreid.engine import hooks
|
|
|
|
from partialreid import *
|
|
|
|
|
|
class Trainer(DefaultTrainer):
|
|
@classmethod
|
|
def build_evaluator(cls, cfg, dataset_name, output_dir=None):
|
|
data_loader, num_query = cls.build_test_loader(cfg, dataset_name)
|
|
return data_loader, DsrEvaluator(cfg, num_query, output_dir)
|
|
|
|
|
|
def setup(args):
|
|
"""
|
|
Create configs and perform basic setups.
|
|
"""
|
|
cfg = get_cfg()
|
|
add_partialreid_config(cfg)
|
|
cfg.merge_from_file(args.config_file)
|
|
cfg.merge_from_list(args.opts)
|
|
cfg.freeze()
|
|
default_setup(cfg, args)
|
|
return cfg
|
|
|
|
|
|
def main(args):
|
|
cfg = setup(args)
|
|
|
|
if args.eval_only:
|
|
logger = logging.getLogger("fastreid.trainer")
|
|
cfg.defrost()
|
|
cfg.MODEL.BACKBONE.PRETRAIN = False
|
|
model = Trainer.build_model(cfg)
|
|
|
|
Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model
|
|
|
|
if cfg.TEST.PRECISE_BN.ENABLED and hooks.get_bn_modules(model):
|
|
prebn_cfg = cfg.clone()
|
|
prebn_cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
|
|
prebn_cfg.DATASETS.NAMES = tuple([cfg.TEST.PRECISE_BN.DATASET]) # set dataset name for PreciseBN
|
|
logger.info("Prepare precise BN dataset")
|
|
hooks.PreciseBN(
|
|
# Run at the same freq as (but before) evaluation.
|
|
model,
|
|
# Build a new data loader to not affect training
|
|
Trainer.build_train_loader(prebn_cfg),
|
|
cfg.TEST.PRECISE_BN.NUM_ITER,
|
|
).update_stats()
|
|
res = Trainer.test(cfg, model)
|
|
return res
|
|
|
|
trainer = Trainer(cfg)
|
|
trainer.resume_or_load(resume=args.resume)
|
|
return trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = default_argument_parser().parse_args()
|
|
print("Command Line Args:", args)
|
|
launch(
|
|
main,
|
|
args.num_gpus,
|
|
num_machines=args.num_machines,
|
|
machine_rank=args.machine_rank,
|
|
dist_url=args.dist_url,
|
|
args=(args,),
|
|
)
|