fast-reid/fastreid/data/samplers/triplet_sampler.py

261 lines
9.9 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: liaoxingyu2@jd.com
"""
import copy
import itertools
from collections import defaultdict
from typing import Optional, List
import numpy as np
from torch.utils.data.sampler import Sampler
from fastreid.utils import comm
def no_index(a, b):
assert isinstance(a, list)
return [i for i, j in enumerate(a) if j != b]
def reorder_index(batch_indices, world_size):
r"""Reorder indices of samples to align with DataParallel training.
In this order, each process will contain all images for one ID, triplet loss
can be computed within each process, and BatchNorm will get a stable result.
Args:
batch_indices: A batched indices generated by sampler
world_size: number of process
Returns:
"""
mini_batchsize = len(batch_indices) // world_size
reorder_indices = []
for i in range(0, mini_batchsize):
for j in range(0, world_size):
reorder_indices.append(batch_indices[i + j * mini_batchsize])
return reorder_indices
class BalancedIdentitySampler(Sampler):
def __init__(self, data_source: List, mini_batch_size: int, num_instances: int, seed: Optional[int] = None):
self.data_source = data_source
self.num_instances = num_instances
self.num_pids_per_batch = mini_batch_size // self.num_instances
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.batch_size = mini_batch_size * self._world_size
self.index_pid = dict()
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.pids = sorted(list(self.pid_index.keys()))
self.num_identities = len(self.pids)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
# Shuffle identity list
identities = np.random.permutation(self.num_identities)
# If remaining identities cannot be enough for a batch,
# just drop the remaining parts
drop_indices = self.num_identities % (self.num_pids_per_batch * self._world_size)
if drop_indices: identities = identities[:-drop_indices]
batch_indices = []
for kid in identities:
i = np.random.choice(self.pid_index[self.pids[kid]])
_, i_pid, i_cam = self.data_source[i]
batch_indices.append(i)
pid_i = self.index_pid[i]
cams = self.pid_cam[pid_i]
index = self.pid_index[pid_i]
select_cams = no_index(cams, i_cam)
if select_cams:
if len(select_cams) >= self.num_instances:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=False)
else:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=True)
for kk in cam_indexes:
batch_indices.append(index[kk])
else:
select_indexes = no_index(index, i)
if not select_indexes:
# Only one image for this identity
ind_indexes = [0] * (self.num_instances - 1)
elif len(select_indexes) >= self.num_instances:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=False)
else:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=True)
for kk in ind_indexes:
batch_indices.append(index[kk])
if len(batch_indices) == self.batch_size:
yield from reorder_index(batch_indices, self._world_size)
batch_indices = []
class SetReWeightSampler(Sampler):
def __init__(self, data_source: str, mini_batch_size: int, num_instances: int, set_weight: list,
seed: Optional[int] = None):
self.data_source = data_source
self.num_instances = num_instances
self.num_pids_per_batch = mini_batch_size // self.num_instances
self.set_weight = set_weight
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.batch_size = mini_batch_size * self._world_size
assert self.batch_size % (sum(self.set_weight) * self.num_instances) == 0 and \
self.batch_size > sum(
self.set_weight) * self.num_instances, "Batch size must be divisible by the sum set weight"
self.index_pid = dict()
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
self.cam_pid = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.cam_pid[camid].append(pid)
# Get sampler prob for each cam
self.set_pid_prob = defaultdict(list)
for camid, pid_list in self.cam_pid.items():
index_per_pid = []
for pid in pid_list:
index_per_pid.append(len(self.pid_index[pid]))
cam_image_number = sum(index_per_pid)
prob = [i / cam_image_number for i in index_per_pid]
self.set_pid_prob[camid] = prob
self.pids = sorted(list(self.pid_index.keys()))
self.num_identities = len(self.pids)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
batch_indices = []
for camid in range(len(self.cam_pid.keys())):
select_pids = np.random.choice(self.cam_pid[camid], size=self.set_weight[camid], replace=False,
p=self.set_pid_prob[camid])
for pid in select_pids:
index_list = self.pid_index[pid]
if len(index_list) > self.num_instances:
select_indexs = np.random.choice(index_list, size=self.num_instances, replace=False)
else:
select_indexs = np.random.choice(index_list, size=self.num_instances, replace=True)
batch_indices += select_indexs
np.random.shuffle(batch_indices)
if len(batch_indices) == self.batch_size:
yield from reorder_index(batch_indices, self._world_size)
class NaiveIdentitySampler(Sampler):
"""
Randomly sample N identities, then for each identity,
randomly sample K instances, therefore batch size is N*K.
Args:
- data_source (list): list of (img_path, pid, camid).
- num_instances (int): number of instances per identity in a batch.
- batch_size (int): number of examples in a batch.
"""
def __init__(self, data_source: str, mini_batch_size: int, num_instances: int, seed: Optional[int] = None):
self.data_source = data_source
self.num_instances = num_instances
self.num_pids_per_batch = mini_batch_size // self.num_instances
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.batch_size = mini_batch_size * self._world_size
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
self.pid_index[pid].append(index)
self.pids = sorted(list(self.pid_index.keys()))
self.num_identities = len(self.pids)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
avl_pids = copy.deepcopy(self.pids)
batch_idxs_dict = {}
batch_indices = []
while len(avl_pids) >= self.num_pids_per_batch:
selected_pids = np.random.choice(avl_pids, self.num_pids_per_batch, replace=False).tolist()
for pid in selected_pids:
# Register pid in batch_idxs_dict if not
if pid not in batch_idxs_dict:
idxs = copy.deepcopy(self.pid_index[pid])
if len(idxs) < self.num_instances:
idxs = np.random.choice(idxs, size=self.num_instances, replace=True).tolist()
np.random.shuffle(idxs)
batch_idxs_dict[pid] = idxs
avl_idxs = batch_idxs_dict[pid]
for _ in range(self.num_instances):
batch_indices.append(avl_idxs.pop(0))
if len(avl_idxs) < self.num_instances: avl_pids.remove(pid)
if len(batch_indices) == self.batch_size:
yield from reorder_index(batch_indices, self._world_size)
batch_indices = []