fast-reid/fastreid/modeling/heads/clas_head.py

37 lines
1.0 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import torch.nn.functional as F
from fastreid.modeling.heads import REID_HEADS_REGISTRY, EmbeddingHead
@REID_HEADS_REGISTRY.register()
class ClasHead(EmbeddingHead):
def forward(self, features, targets=None):
"""
See :class:`ClsHeads.forward`.
"""
pool_feat = self.pool_layer(features)
neck_feat = self.bottleneck(pool_feat)
neck_feat = neck_feat.view(neck_feat.size(0), -1)
if self.cls_layer.__class__.__name__ == 'Linear':
logits = F.linear(neck_feat, self.weight)
else:
logits = F.linear(F.normalize(neck_feat), F.normalize(self.weight))
# Evaluation
if not self.training: return logits.mul_(self.cls_layer.s)
cls_outputs = self.cls_layer(logits, targets)
return {
"cls_outputs": cls_outputs,
"pred_class_logits": logits.mul_(self.cls_layer.s),
"features": neck_feat,
}