mirror of https://github.com/JDAI-CV/fast-reid.git
191 lines
5.8 KiB
Python
191 lines
5.8 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image, ImageOps, ImageEnhance
|
|
|
|
|
|
def to_tensor(pic):
|
|
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
|
|
|
|
See ``ToTensor`` for more details.
|
|
|
|
Args:
|
|
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
|
|
|
|
Returns:
|
|
Tensor: Converted image.
|
|
"""
|
|
if isinstance(pic, np.ndarray):
|
|
assert len(pic.shape) in (2, 3)
|
|
# handle numpy array
|
|
if pic.ndim == 2:
|
|
pic = pic[:, :, None]
|
|
|
|
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
|
# backward compatibility
|
|
if isinstance(img, torch.ByteTensor):
|
|
return img.float()
|
|
else:
|
|
return img
|
|
|
|
# handle PIL Image
|
|
if pic.mode == 'I':
|
|
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
|
elif pic.mode == 'I;16':
|
|
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
|
elif pic.mode == 'F':
|
|
img = torch.from_numpy(np.array(pic, np.float32, copy=False))
|
|
elif pic.mode == '1':
|
|
img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
|
|
else:
|
|
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
|
|
# PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK
|
|
if pic.mode == 'YCbCr':
|
|
nchannel = 3
|
|
elif pic.mode == 'I;16':
|
|
nchannel = 1
|
|
else:
|
|
nchannel = len(pic.mode)
|
|
img = img.view(pic.size[1], pic.size[0], nchannel)
|
|
# put it from HWC to CHW format
|
|
# yikes, this transpose takes 80% of the loading time/CPU
|
|
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
|
if isinstance(img, torch.ByteTensor):
|
|
return img.float()
|
|
else:
|
|
return img
|
|
|
|
|
|
def int_parameter(level, maxval):
|
|
"""Helper function to scale `val` between 0 and maxval .
|
|
Args:
|
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
|
|
maxval: Maximum value that the operation can have. This will be scaled to
|
|
level/PARAMETER_MAX.
|
|
Returns:
|
|
An int that results from scaling `maxval` according to `level`.
|
|
"""
|
|
return int(level * maxval / 10)
|
|
|
|
|
|
def float_parameter(level, maxval):
|
|
"""Helper function to scale `val` between 0 and maxval.
|
|
Args:
|
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
|
|
maxval: Maximum value that the operation can have. This will be scaled to
|
|
level/PARAMETER_MAX.
|
|
Returns:
|
|
A float that results from scaling `maxval` according to `level`.
|
|
"""
|
|
return float(level) * maxval / 10.
|
|
|
|
|
|
def sample_level(n):
|
|
return np.random.uniform(low=0.1, high=n)
|
|
|
|
|
|
def autocontrast(pil_img, *args):
|
|
return ImageOps.autocontrast(pil_img)
|
|
|
|
|
|
def equalize(pil_img, *args):
|
|
return ImageOps.equalize(pil_img)
|
|
|
|
|
|
def posterize(pil_img, level, *args):
|
|
level = int_parameter(sample_level(level), 4)
|
|
return ImageOps.posterize(pil_img, 4 - level)
|
|
|
|
|
|
def rotate(pil_img, level, *args):
|
|
degrees = int_parameter(sample_level(level), 30)
|
|
if np.random.uniform() > 0.5:
|
|
degrees = -degrees
|
|
return pil_img.rotate(degrees, resample=Image.BILINEAR)
|
|
|
|
|
|
def solarize(pil_img, level, *args):
|
|
level = int_parameter(sample_level(level), 256)
|
|
return ImageOps.solarize(pil_img, 256 - level)
|
|
|
|
|
|
def shear_x(pil_img, level, image_size):
|
|
level = float_parameter(sample_level(level), 0.3)
|
|
if np.random.uniform() > 0.5:
|
|
level = -level
|
|
return pil_img.transform(image_size,
|
|
Image.AFFINE, (1, level, 0, 0, 1, 0),
|
|
resample=Image.BILINEAR)
|
|
|
|
|
|
def shear_y(pil_img, level, image_size):
|
|
level = float_parameter(sample_level(level), 0.3)
|
|
if np.random.uniform() > 0.5:
|
|
level = -level
|
|
return pil_img.transform(image_size,
|
|
Image.AFFINE, (1, 0, 0, level, 1, 0),
|
|
resample=Image.BILINEAR)
|
|
|
|
|
|
def translate_x(pil_img, level, image_size):
|
|
level = int_parameter(sample_level(level), image_size[0] / 3)
|
|
if np.random.random() > 0.5:
|
|
level = -level
|
|
return pil_img.transform(image_size,
|
|
Image.AFFINE, (1, 0, level, 0, 1, 0),
|
|
resample=Image.BILINEAR)
|
|
|
|
|
|
def translate_y(pil_img, level, image_size):
|
|
level = int_parameter(sample_level(level), image_size[1] / 3)
|
|
if np.random.random() > 0.5:
|
|
level = -level
|
|
return pil_img.transform(image_size,
|
|
Image.AFFINE, (1, 0, 0, 0, 1, level),
|
|
resample=Image.BILINEAR)
|
|
|
|
|
|
# operation that overlaps with ImageNet-C's test set
|
|
def color(pil_img, level, *args):
|
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
|
return ImageEnhance.Color(pil_img).enhance(level)
|
|
|
|
|
|
# operation that overlaps with ImageNet-C's test set
|
|
def contrast(pil_img, level, *args):
|
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
|
return ImageEnhance.Contrast(pil_img).enhance(level)
|
|
|
|
|
|
# operation that overlaps with ImageNet-C's test set
|
|
def brightness(pil_img, level, *args):
|
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
|
return ImageEnhance.Brightness(pil_img).enhance(level)
|
|
|
|
|
|
# operation that overlaps with ImageNet-C's test set
|
|
def sharpness(pil_img, level, *args):
|
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
|
return ImageEnhance.Sharpness(pil_img).enhance(level)
|
|
|
|
|
|
augmentations_reid = [
|
|
autocontrast, equalize, posterize, shear_x, shear_y,
|
|
color, contrast, brightness, sharpness
|
|
]
|
|
|
|
augmentations = [
|
|
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y,
|
|
translate_x, translate_y
|
|
]
|
|
|
|
augmentations_all = [
|
|
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y,
|
|
translate_x, translate_y, color, contrast, brightness, sharpness
|
|
]
|