mirror of
https://github.com/JDAI-CV/fast-reid.git
synced 2025-06-03 14:50:47 +08:00
AMP in partial-fc needs to be done only on backbone; In order to impl `resume training`, need to save & load different part of classifier weight in each GPU.
180 lines
6.2 KiB
Python
180 lines
6.2 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: xingyu liao
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from fastreid.layers import get_norm
|
|
from fastreid.modeling.backbones import BACKBONE_REGISTRY
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
"""1x1 convolution"""
|
|
return nn.Conv2d(in_planes,
|
|
out_planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False)
|
|
|
|
|
|
class IBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, bn_norm, stride=1, downsample=None,
|
|
groups=1, base_width=64, dilation=1):
|
|
super().__init__()
|
|
if groups != 1 or base_width != 64:
|
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
|
if dilation > 1:
|
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
|
self.bn1 = get_norm(bn_norm, inplanes)
|
|
self.conv1 = conv3x3(inplanes, planes)
|
|
self.bn2 = get_norm(bn_norm, planes)
|
|
self.prelu = nn.PReLU(planes)
|
|
self.conv2 = conv3x3(planes, planes, stride)
|
|
self.bn3 = get_norm(bn_norm, planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
out = self.bn1(x)
|
|
out = self.conv1(out)
|
|
out = self.bn2(out)
|
|
out = self.prelu(out)
|
|
out = self.conv2(out)
|
|
out = self.bn3(out)
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
out += identity
|
|
return out
|
|
|
|
|
|
class IResNet(nn.Module):
|
|
fc_scale = 7 * 7
|
|
|
|
def __init__(self, block, layers, bn_norm, dropout=0, zero_init_residual=False,
|
|
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
|
|
super().__init__()
|
|
self.inplanes = 64
|
|
self.dilation = 1
|
|
self.fp16 = fp16
|
|
if replace_stride_with_dilation is None:
|
|
replace_stride_with_dilation = [False, False, False]
|
|
if len(replace_stride_with_dilation) != 3:
|
|
raise ValueError("replace_stride_with_dilation should be None "
|
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
|
self.groups = groups
|
|
self.base_width = width_per_group
|
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn1 = get_norm(bn_norm, self.inplanes)
|
|
self.prelu = nn.PReLU(self.inplanes)
|
|
self.layer1 = self._make_layer(block, 64, layers[0], bn_norm, stride=2)
|
|
self.layer2 = self._make_layer(block,
|
|
128,
|
|
layers[1],
|
|
bn_norm,
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[0])
|
|
self.layer3 = self._make_layer(block,
|
|
256,
|
|
layers[2],
|
|
bn_norm,
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[1])
|
|
self.layer4 = self._make_layer(block,
|
|
512,
|
|
layers[3],
|
|
bn_norm,
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[2])
|
|
self.bn2 = get_norm(bn_norm, 512 * block.expansion)
|
|
self.dropout = nn.Dropout(p=dropout, inplace=True)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.normal_(m.weight, 0, 0.1)
|
|
elif m.__class__.__name__.find('Norm') != -1:
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
if zero_init_residual:
|
|
for m in self.modules():
|
|
if isinstance(m, IBasicBlock):
|
|
nn.init.constant_(m.bn2.weight, 0)
|
|
|
|
def _make_layer(self, block, planes, blocks, bn_norm, stride=1, dilate=False):
|
|
downsample = None
|
|
previous_dilation = self.dilation
|
|
if dilate:
|
|
self.dilation *= stride
|
|
stride = 1
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
conv1x1(self.inplanes, planes * block.expansion, stride),
|
|
get_norm(bn_norm, planes * block.expansion),
|
|
)
|
|
layers = []
|
|
layers.append(
|
|
block(self.inplanes, planes, bn_norm, stride, downsample, self.groups,
|
|
self.base_width, previous_dilation))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(
|
|
block(self.inplanes,
|
|
planes,
|
|
bn_norm,
|
|
groups=self.groups,
|
|
base_width=self.base_width,
|
|
dilation=self.dilation))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.prelu(x)
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
x = self.bn2(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_iresnet_backbone(cfg):
|
|
"""
|
|
Create a IResNet instance from config.
|
|
Returns:
|
|
ResNet: a :class:`ResNet` instance.
|
|
"""
|
|
|
|
# fmt: off
|
|
bn_norm = cfg.MODEL.BACKBONE.NORM
|
|
depth = cfg.MODEL.BACKBONE.DEPTH
|
|
dropout = cfg.MODEL.BACKBONE.DROPOUT
|
|
fp16 = cfg.SOLVER.AMP.ENABLED
|
|
# fmt: on
|
|
|
|
num_blocks_per_stage = {
|
|
'18x': [2, 2, 2, 2],
|
|
'34x': [3, 4, 6, 3],
|
|
'50x': [3, 4, 14, 3],
|
|
'100x': [3, 13, 30, 3],
|
|
'200x': [6, 26, 60, 6],
|
|
}[depth]
|
|
|
|
model = IResNet(IBasicBlock, num_blocks_per_stage, bn_norm, dropout, fp16=fp16)
|
|
return model
|