mirror of https://github.com/JDAI-CV/fast-reid.git
474 lines
22 KiB
C++
474 lines
22 KiB
C++
#include <limits>
|
|
#include <vector>
|
|
#include <iostream>
|
|
#include "fastrt/utils.h"
|
|
#include "fastrt/layers.h"
|
|
|
|
namespace trtxapi {
|
|
|
|
IActivationLayer* addMinClamp(INetworkDefinition* network, ITensor& input, const float min) {
|
|
IActivationLayer* clip = network->addActivation(input, ActivationType::kCLIP);
|
|
TRTASSERT(clip);
|
|
clip->setAlpha(min);
|
|
clip->setBeta(std::numeric_limits<float>::max());
|
|
return clip;
|
|
}
|
|
|
|
ITensor* addDiv255(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor* input, const std::string lname) {
|
|
Weights Div_225{ DataType::kFLOAT, nullptr, 3 };
|
|
float *wgt = reinterpret_cast<float*>(malloc(sizeof(float) * 3));
|
|
std::fill_n(wgt, 3, 255.0f);
|
|
Div_225.values = wgt;
|
|
weightMap[lname + ".div"] = Div_225;
|
|
IConstantLayer* d = network->addConstant(Dims3{ 3, 1, 1 }, Div_225);
|
|
IElementWiseLayer* div255 = network->addElementWise(*input, *d->getOutput(0), ElementWiseOperation::kDIV);
|
|
return div255->getOutput(0);
|
|
}
|
|
|
|
ITensor* addMeanStd(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor* input, const std::string lname, const float* mean, const float* std, const bool div255) {
|
|
ITensor* tensor_holder{input};
|
|
if (div255) {
|
|
tensor_holder = addDiv255(network, weightMap, input, lname);
|
|
}
|
|
Weights Mean{ DataType::kFLOAT, nullptr, 3 };
|
|
Mean.values = mean;
|
|
IConstantLayer* m = network->addConstant(Dims3{ 3, 1, 1 }, Mean);
|
|
IElementWiseLayer* sub_mean = network->addElementWise(*tensor_holder, *m->getOutput(0), ElementWiseOperation::kSUB);
|
|
if (std != nullptr) {
|
|
Weights Std{ DataType::kFLOAT, nullptr, 3 };
|
|
Std.values = std;
|
|
IConstantLayer* s = network->addConstant(Dims3{ 3, 1, 1 }, Std);
|
|
IElementWiseLayer* std_mean = network->addElementWise(*sub_mean->getOutput(0), *s->getOutput(0), ElementWiseOperation::kDIV);
|
|
return std_mean->getOutput(0);
|
|
} else {
|
|
return sub_mean->getOutput(0);
|
|
}
|
|
}
|
|
|
|
IScaleLayer* addBatchNorm2d(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname, const float eps) {
|
|
float *gamma = (float*)weightMap[lname + ".weight"].values;
|
|
float *beta = (float*)weightMap[lname + ".bias"].values;
|
|
float *mean = (float*)weightMap[lname + ".running_mean"].values;
|
|
float *var = (float*)weightMap[lname + ".running_var"].values;
|
|
int len = weightMap[lname + ".running_var"].count;
|
|
|
|
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
|
|
for (int i = 0; i < len; i++) {
|
|
scval[i] = gamma[i] / sqrt(var[i] + eps);
|
|
}
|
|
Weights wscale{DataType::kFLOAT, scval, len};
|
|
|
|
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
|
|
for (int i = 0; i < len; i++) {
|
|
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
|
|
}
|
|
Weights wshift{DataType::kFLOAT, shval, len};
|
|
|
|
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
|
|
for (int i = 0; i < len; i++) {
|
|
pval[i] = 1.0;
|
|
}
|
|
Weights wpower{DataType::kFLOAT, pval, len};
|
|
|
|
weightMap[lname + ".scale"] = wscale;
|
|
weightMap[lname + ".shift"] = wshift;
|
|
weightMap[lname + ".power"] = wpower;
|
|
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, wshift, wscale, wpower);
|
|
TRTASSERT(scale_1);
|
|
return scale_1;
|
|
}
|
|
|
|
IScaleLayer* addInstanceNorm2d(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname, const float eps) {
|
|
int len = weightMap[lname + ".weight"].count;
|
|
IReduceLayer* reduce1 = network->addReduce(input,
|
|
ReduceOperation::kAVG,
|
|
6,
|
|
true);
|
|
TRTASSERT(reduce1);
|
|
|
|
IElementWiseLayer* ew1 = network->addElementWise(input,
|
|
*reduce1->getOutput(0),
|
|
ElementWiseOperation::kSUB);
|
|
TRTASSERT(ew1);
|
|
|
|
const static float pval1[3]{0.0, 1.0, 2.0};
|
|
Weights wshift1{DataType::kFLOAT, pval1, 1};
|
|
Weights wscale1{DataType::kFLOAT, pval1+1, 1};
|
|
Weights wpower1{DataType::kFLOAT, pval1+2, 1};
|
|
|
|
IScaleLayer* scale1 = network->addScale(
|
|
*ew1->getOutput(0),
|
|
ScaleMode::kUNIFORM,
|
|
wshift1,
|
|
wscale1,
|
|
wpower1);
|
|
TRTASSERT(scale1);
|
|
|
|
IReduceLayer* reduce2 = network->addReduce(
|
|
*scale1->getOutput(0),
|
|
ReduceOperation::kAVG,
|
|
6,
|
|
true);
|
|
TRTASSERT(reduce2);
|
|
|
|
const static float pval2[3]{eps, 1.0, 0.5};
|
|
Weights wshift2{DataType::kFLOAT, pval2, 1};
|
|
Weights wscale2{DataType::kFLOAT, pval2+1, 1};
|
|
Weights wpower2{DataType::kFLOAT, pval2+2, 1};
|
|
|
|
IScaleLayer* scale2 = network->addScale(
|
|
*reduce2->getOutput(0),
|
|
ScaleMode::kUNIFORM,
|
|
wshift2,
|
|
wscale2,
|
|
wpower2);
|
|
TRTASSERT(scale2);
|
|
|
|
IElementWiseLayer* ew2 = network->addElementWise(*ew1->getOutput(0),
|
|
*scale2->getOutput(0),
|
|
ElementWiseOperation::kDIV);
|
|
TRTASSERT(ew2);
|
|
|
|
float* pval3 = reinterpret_cast<float*>(malloc(sizeof(float) * len));
|
|
std::fill_n(pval3, len, 1.0);
|
|
Weights wpower3{DataType::kFLOAT, pval3, len};
|
|
weightMap[lname + ".power3"] = wpower3;
|
|
|
|
IScaleLayer* scale3 = network->addScale(
|
|
*ew2->getOutput(0),
|
|
ScaleMode::kCHANNEL,
|
|
weightMap[lname + ".bias"],
|
|
weightMap[lname + ".weight"],
|
|
wpower3);
|
|
TRTASSERT(scale3);
|
|
return scale3;
|
|
}
|
|
|
|
IConcatenationLayer* addIBN(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname) {
|
|
Dims spliteDims = input.getDimensions();
|
|
ISliceLayer *split1 = network->addSlice(input,
|
|
Dims3{0, 0, 0},
|
|
Dims3{spliteDims.d[0]/2, spliteDims.d[1], spliteDims.d[2]},
|
|
Dims3{1, 1, 1});
|
|
TRTASSERT(split1);
|
|
|
|
ISliceLayer *split2 = network->addSlice(input,
|
|
Dims3{spliteDims.d[0]/2, 0, 0},
|
|
Dims3{spliteDims.d[0]/2, spliteDims.d[1], spliteDims.d[2]},
|
|
Dims3{1, 1, 1});
|
|
TRTASSERT(split2);
|
|
|
|
auto in1 = addInstanceNorm2d(network, weightMap, *split1->getOutput(0), lname + "IN", 1e-5);
|
|
auto bn1 = addBatchNorm2d(network, weightMap, *split2->getOutput(0), lname + "BN", 1e-5);
|
|
|
|
ITensor* tensor1[] = {in1->getOutput(0), bn1->getOutput(0)};
|
|
auto cat1 = network->addConcatenation(tensor1, 2);
|
|
TRTASSERT(cat1);
|
|
return cat1;
|
|
}
|
|
|
|
IActivationLayer* basicBlock_ibn(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const int inch, const int outch, const int stride, const std::string lname, const std::string ibn) {
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{3, 3}, weightMap[lname + "conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
conv1->setStrideNd(DimsHW{stride, stride});
|
|
conv1->setPaddingNd(DimsHW{1, 1});
|
|
|
|
ILayer* bn1{conv1};
|
|
if (ibn == "a") {
|
|
bn1 = addIBN(network, weightMap, *conv1->getOutput(0), lname + "bn1.");
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
|
|
TRTASSERT(conv2);
|
|
conv2->setPaddingNd(DimsHW{1, 1});
|
|
|
|
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
|
|
|
|
IElementWiseLayer* ew1;
|
|
if (inch != outch) {
|
|
IConvolutionLayer* conv3 = network->addConvolutionNd(input, outch, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
|
|
TRTASSERT(conv3);
|
|
conv3->setStrideNd(DimsHW{stride, stride});
|
|
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "downsample.1", 1e-5);
|
|
ew1 = network->addElementWise(*bn3->getOutput(0), *bn2->getOutput(0), ElementWiseOperation::kSUM);
|
|
} else {
|
|
ew1 = network->addElementWise(input, *bn2->getOutput(0), ElementWiseOperation::kSUM);
|
|
}
|
|
ILayer* in1{ew1};
|
|
if (ibn == "b") {
|
|
in1 = addInstanceNorm2d(network, weightMap, *ew1->getOutput(0), lname + "IN", 1e-5);
|
|
}
|
|
|
|
IActivationLayer* relu2 = network->addActivation(*in1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu2);
|
|
return relu2;
|
|
}
|
|
|
|
IActivationLayer* bottleneck_ibn(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, const int inch, const int outch, const int stride, const std::string lname, const std::string ibn) {
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{1, 1}, weightMap[lname + "conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
|
|
ILayer* bn1{conv1};
|
|
if (ibn == "a") {
|
|
bn1 = addIBN(network, weightMap, *conv1->getOutput(0), lname + "bn1.");
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
|
|
TRTASSERT(conv2);
|
|
conv2->setStrideNd(DimsHW{stride, stride});
|
|
conv2->setPaddingNd(DimsHW{1, 1});
|
|
|
|
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
|
|
|
|
IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu2);
|
|
|
|
IConvolutionLayer* conv3 = network->addConvolutionNd(*relu2->getOutput(0), outch * 4, DimsHW{1, 1}, weightMap[lname + "conv3.weight"], emptywts);
|
|
TRTASSERT(conv3);
|
|
|
|
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "bn3", 1e-5);
|
|
|
|
IElementWiseLayer* ew1;
|
|
if (stride != 1 || inch != outch * 4) {
|
|
IConvolutionLayer* conv4 = network->addConvolutionNd(input, outch * 4, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
|
|
TRTASSERT(conv4);
|
|
conv4->setStrideNd(DimsHW{stride, stride});
|
|
|
|
IScaleLayer* bn4 = addBatchNorm2d(network, weightMap, *conv4->getOutput(0), lname + "downsample.1", 1e-5);
|
|
ew1 = network->addElementWise(*bn4->getOutput(0), *bn3->getOutput(0), ElementWiseOperation::kSUM);
|
|
} else {
|
|
ew1 = network->addElementWise(input, *bn3->getOutput(0), ElementWiseOperation::kSUM);
|
|
}
|
|
|
|
ILayer* in1{ew1};
|
|
if (ibn == "b") {
|
|
in1 = addInstanceNorm2d(network, weightMap, *ew1->getOutput(0), lname + "IN", 1e-5);
|
|
}
|
|
IActivationLayer* relu3 = network->addActivation(*in1->getOutput(0), ActivationType::kRELU);
|
|
|
|
TRTASSERT(relu3);
|
|
return relu3;
|
|
}
|
|
|
|
ILayer* distill_basicBlock_ibn(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const int inch, const int outch, const int stride, const std::string lname, const std::string ibn) {
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
|
|
IActivationLayer* relu_identity = network->addActivation(input, ActivationType::kRELU);
|
|
TRTASSERT(relu_identity);
|
|
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(*relu_identity->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
conv1->setStrideNd(DimsHW{stride, stride});
|
|
conv1->setPaddingNd(DimsHW{1, 1});
|
|
|
|
ILayer* bn1{conv1};
|
|
if (ibn == "a") {
|
|
bn1 = addIBN(network, weightMap, *conv1->getOutput(0), lname + "bn1.");
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
|
|
TRTASSERT(conv2);
|
|
conv2->setPaddingNd(DimsHW{1, 1});
|
|
|
|
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
|
|
|
|
IElementWiseLayer* ew1;
|
|
if (inch != outch) {
|
|
IConvolutionLayer* conv3 = network->addConvolutionNd(*relu_identity->getOutput(0), outch, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
|
|
TRTASSERT(conv3);
|
|
conv3->setStrideNd(DimsHW{stride, stride});
|
|
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "downsample.1", 1e-5);
|
|
ew1 = network->addElementWise(*bn3->getOutput(0), *bn2->getOutput(0), ElementWiseOperation::kSUM);
|
|
} else {
|
|
ew1 = network->addElementWise(*relu_identity->getOutput(0), *bn2->getOutput(0), ElementWiseOperation::kSUM);
|
|
}
|
|
ILayer* in1{ew1};
|
|
if (ibn == "b") {
|
|
in1 = addInstanceNorm2d(network, weightMap, *ew1->getOutput(0), lname + "IN", 1e-5);
|
|
}
|
|
return in1;
|
|
}
|
|
|
|
ILayer* distill_bottleneck_ibn(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, const int inch, const int outch, const int stride, const std::string lname, const std::string ibn) {
|
|
Weights emptywts{DataType::kFLOAT, nullptr, 0};
|
|
|
|
IActivationLayer* relu_identity = network->addActivation(input, ActivationType::kRELU);
|
|
TRTASSERT(relu_identity);
|
|
|
|
IConvolutionLayer* conv1 = network->addConvolutionNd(*relu_identity->getOutput(0), outch, DimsHW{1, 1}, weightMap[lname + "conv1.weight"], emptywts);
|
|
TRTASSERT(conv1);
|
|
|
|
ILayer* bn1{conv1};
|
|
if (ibn == "a") {
|
|
bn1 = addIBN(network, weightMap, *conv1->getOutput(0), lname + "bn1.");
|
|
} else {
|
|
bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
|
|
}
|
|
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu1);
|
|
|
|
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
|
|
TRTASSERT(conv2);
|
|
conv2->setStrideNd(DimsHW{stride, stride});
|
|
conv2->setPaddingNd(DimsHW{1, 1});
|
|
|
|
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
|
|
|
|
IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
|
|
TRTASSERT(relu2);
|
|
|
|
IConvolutionLayer* conv3 = network->addConvolutionNd(*relu2->getOutput(0), outch * 4, DimsHW{1, 1}, weightMap[lname + "conv3.weight"], emptywts);
|
|
TRTASSERT(conv3);
|
|
|
|
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "bn3", 1e-5);
|
|
|
|
IElementWiseLayer* ew1;
|
|
if (stride != 1 || inch != outch * 4) {
|
|
IConvolutionLayer* conv4 = network->addConvolutionNd(*relu_identity->getOutput(0), outch * 4, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
|
|
TRTASSERT(conv4);
|
|
conv4->setStrideNd(DimsHW{stride, stride});
|
|
|
|
IScaleLayer* bn4 = addBatchNorm2d(network, weightMap, *conv4->getOutput(0), lname + "downsample.1", 1e-5);
|
|
ew1 = network->addElementWise(*bn4->getOutput(0), *bn3->getOutput(0), ElementWiseOperation::kSUM);
|
|
} else {
|
|
ew1 = network->addElementWise(*relu_identity->getOutput(0), *bn3->getOutput(0), ElementWiseOperation::kSUM);
|
|
}
|
|
|
|
ILayer* in1{ew1};
|
|
if (ibn == "b") {
|
|
in1 = addInstanceNorm2d(network, weightMap, *ew1->getOutput(0), lname + "IN", 1e-5);
|
|
}
|
|
return in1;
|
|
}
|
|
|
|
IShuffleLayer* addShuffle2(INetworkDefinition* network, ITensor& input, const Dims dims, const Permutation pmt, const bool reshape_first) {
|
|
IShuffleLayer* shuffleLayer = network->addShuffle(input);
|
|
TRTASSERT(shuffleLayer);
|
|
if (reshape_first) {
|
|
shuffleLayer->setReshapeDimensions(dims);
|
|
shuffleLayer->setSecondTranspose(pmt);
|
|
} else {
|
|
shuffleLayer->setFirstTranspose(pmt);
|
|
shuffleLayer->setReshapeDimensions(dims);
|
|
}
|
|
return shuffleLayer;
|
|
}
|
|
|
|
IElementWiseLayer* Non_local(INetworkDefinition* network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname, const int reduc_ratio) {
|
|
int in_channel = input.getDimensions().d[0];
|
|
/* Hint: fast-reid use "in_channel / reduc_ratio" during Sep 10, 2020 to Dec 7, 2020 */
|
|
//int inter_channels = in_channel / reduc_ratio;
|
|
int inter_channels = 1;
|
|
std::cout << "[Non_local] inter_channels: " << inter_channels << std::endl;
|
|
IConvolutionLayer* g = network->addConvolutionNd(input, inter_channels, DimsHW{1, 1}, weightMap[ lname + "g.weight"], weightMap[lname + "g.bias"]);
|
|
TRTASSERT(g);
|
|
|
|
auto g_permute = addShuffle2(network, *g->getOutput(0), Dims2{g->getOutput(0)->getDimensions().d[0], -1}, Permutation{1, 0}, true);
|
|
IConvolutionLayer* theta = network->addConvolutionNd(input, inter_channels, DimsHW{1, 1}, weightMap[lname + "theta.weight"], weightMap[lname + "theta.bias"]);
|
|
TRTASSERT(theta);
|
|
|
|
auto theta_permute = addShuffle2(network, *theta->getOutput(0), Dims2{theta->getOutput(0)->getDimensions().d[0], -1}, Permutation{1, 0}, true);
|
|
IConvolutionLayer* phi = network->addConvolutionNd(input, inter_channels, DimsHW{1, 1}, weightMap[lname + "phi.weight"], weightMap[lname + "phi.bias"]);
|
|
TRTASSERT(phi);
|
|
|
|
IShuffleLayer* phi_view = network->addShuffle(*phi->getOutput(0));
|
|
TRTASSERT(phi_view);
|
|
phi_view->setReshapeDimensions(Dims2{phi->getOutput(0)->getDimensions().d[0], -1});
|
|
|
|
IMatrixMultiplyLayer *f = network->addMatrixMultiply(*theta_permute->getOutput(0), MatrixOperation::kNONE, *phi_view->getOutput(0), MatrixOperation::kNONE);
|
|
int N = f->getOutput(0)->getDimensions().d[f->getOutput(0)->getDimensions().nbDims-1];
|
|
|
|
float* pval = reinterpret_cast<float*>(malloc(sizeof(float) * N * N));
|
|
std::fill_n(pval, N*N, N);
|
|
Weights dem{DataType::kFLOAT, pval, N*N};
|
|
weightMap[lname + ".dem"] = dem;
|
|
|
|
auto dem_n = network->addConstant(Dims2(N, N), dem);
|
|
IElementWiseLayer* f_div_C = network->addElementWise(*f->getOutput(0),
|
|
*dem_n->getOutput(0),
|
|
ElementWiseOperation::kDIV);
|
|
TRTASSERT(f_div_C);
|
|
|
|
IMatrixMultiplyLayer *y = network->addMatrixMultiply(*f_div_C->getOutput(0), MatrixOperation::kNONE, *g_permute->getOutput(0), MatrixOperation::kNONE);
|
|
IShuffleLayer* y_permute = addShuffle2(network, *y->getOutput(0), Dims3{inter_channels, input.getDimensions().d[1], input.getDimensions().d[2]}, Permutation{1, 0}, false);
|
|
TRTASSERT(y_permute);
|
|
IConvolutionLayer* w_conv = network->addConvolutionNd(*y_permute->getOutput(0), in_channel, DimsHW{1, 1}, weightMap[lname + "W.0.weight"], weightMap[lname + "W.0.bias"]);
|
|
TRTASSERT(w_conv);
|
|
IScaleLayer* w_bn = addBatchNorm2d(network, weightMap, *w_conv->getOutput(0), lname + "W.1", 1e-5);
|
|
TRTASSERT(w_bn);
|
|
|
|
// z = W_y + x
|
|
IElementWiseLayer* z = network->addElementWise(*w_bn->getOutput(0),
|
|
input,
|
|
ElementWiseOperation::kSUM);
|
|
TRTASSERT(z);
|
|
return z;
|
|
}
|
|
|
|
IPoolingLayer* addAdaptiveAvgPool2d(INetworkDefinition* network, ITensor& input, const DimsHW output_dim) {
|
|
Dims input_dims = input.getDimensions();
|
|
TRTASSERT((input_dims.nbDims == 3));
|
|
// stride_dim = floor(input_dim/output_dim)
|
|
DimsHW stride_dims{(int)(input_dims.d[1]/output_dim.h()),
|
|
(int)(input_dims.d[2]/output_dim.w())};
|
|
// kernel_dims = input_dim -(output_dim-1)*stride_dim
|
|
DimsHW kernel_dims{input_dims.d[1] - (output_dim.h()-1) * stride_dims.h(),
|
|
input_dims.d[2] - (output_dim.w()-1) * stride_dims.w()};
|
|
IPoolingLayer* avgpool = network->addPoolingNd(input, PoolingType::kAVERAGE, kernel_dims);
|
|
TRTASSERT(avgpool);
|
|
avgpool->setStrideNd(stride_dims);
|
|
return avgpool;
|
|
}
|
|
|
|
IScaleLayer* addGeneralizedMeanPooling(INetworkDefinition* network, ITensor& input, const float norm, const DimsHW output_dim, const float eps) {
|
|
TRTASSERT((norm > 0.f));
|
|
// x = x.clamp(min=eps)
|
|
IActivationLayer* clamp1 = addMinClamp(network, input, eps);
|
|
// (x)^norm
|
|
const static float pval1[3]{0.0, 1.0, norm};
|
|
Weights wshift1{DataType::kFLOAT, pval1, 1};
|
|
Weights wscale1{DataType::kFLOAT, pval1+1, 1};
|
|
Weights wpower1{DataType::kFLOAT, pval1+2, 1};
|
|
|
|
IScaleLayer* scale1 = network->addScale(
|
|
*clamp1->getOutput(0),
|
|
ScaleMode::kUNIFORM,
|
|
wshift1,
|
|
wscale1,
|
|
wpower1);
|
|
TRTASSERT(scale1);
|
|
|
|
IPoolingLayer* ada_avg_pool = addAdaptiveAvgPool2d(network, *scale1->getOutput(0));
|
|
TRTASSERT(ada_avg_pool);
|
|
|
|
// (ada_avg_pool)^(1/norm)
|
|
const static float pval2[3]{0.0, 1.0, 1.f/norm};
|
|
Weights wshift2{DataType::kFLOAT, pval2, 1};
|
|
Weights wscale2{DataType::kFLOAT, pval2+1, 1};
|
|
Weights wpower2{DataType::kFLOAT, pval2+2, 1};
|
|
|
|
IScaleLayer* scale2 = network->addScale(
|
|
*ada_avg_pool->getOutput(0),
|
|
ScaleMode::kUNIFORM,
|
|
wshift2,
|
|
wscale2,
|
|
wpower2);
|
|
TRTASSERT(scale2);
|
|
return scale2;
|
|
}
|
|
} |