fast-reid/MODEL_ZOO.md

4.6 KiB

FastReID Model Zoo and Baselines

Introduction

BoT:

Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.

AGW:

This is a re-implementation of ReID-Survey with a Powerful AGW Baseline

MGN:

SBS:

stronger baseline on top of BoT:

Bag of Freebies(BoF):

  1. Circle loss
  2. Freeze backbone training
  3. Cutout data augmentation & Auto Augmentation
  4. Cosine annealing learning rate decay
  5. Soft margin triplet loss

Bag of Specials(BoS):

  1. Non-local block
  2. GeM pooling

Market1501 Baselines

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50) ImageNet 94.4% 86.1% 59.4%
BoT(R50-ibn) ImageNet 94.9% 87.6% 64.1%
BoT(S50) ImageNet 95.1% 88.5% 66.0%
BoT(R101-ibn) ImageNet 95.4% 88.9% 67.4%

AGW:

Method Pretrained Rank@1 mAP mINP
AGW(R50) ImageNet 95.3% 88.2% 66.3%
AGW(R50-ibn) ImageNet 95.1% 88.7% 67.1%
AGW(S50) ImageNet 94.7% 87.1% 62.2%
AGW(R101-ibn) ImageNet 95.5% 89.5% 69.5%

SBS:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet 95.4% 88.2% 64.8%
SBS(R50-ibn) ImageNet 95.7% 89.3% 67.5%
SBS(S50) ImageNet 95.0% 87.0% 60.6%
SBS(R101-ibn) ImageNet 96.3% 90.3% 70.0%

MGN:

Method Pretrained Rank@1 mAP mINP
SBS(R50-ibn) ImageNet 95.8% 89.7% 67.0%

DukeMTMC Baseline

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50) ImageNet 87.1% 76.9% 41.6%
BoT(R50-ibn) ImageNet 89.6% 79.1% 44.4%
BoT(S50) ImageNet 87.8% 77.7% 39.6%
BoT(R101-ibn) ImageNet 91.1% 81.3% 47.7%

AGW:

Method Pretrained Rank@1 mAP mINP
AGW(R50) ImageNet 89.0% 79.9% 46.3%
AGW(R50-ibn) ImageNet 89.8% 80.7% 47.7%
AGW(S50) ImageNet 89.9% 79.7% 44.2%
AGW(R101-ibn) ImageNet 91.4% 82.1% 50.2%

SBS:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet 89.6% 79.8% 44.6%
SBS(R50-ibn) ImageNet 91.3% 81.6% 47.6%
SBS(S50) ImageNet 90.5% 79.1% 42.7%
SBS(R101-ibn) ImageNet 92.4% 83.2% 49.7%

MGN:

Method Pretrained Rank@1 mAP mINP
SBS(R50-ibn) ImageNet 91.6% 82.1% 46.7%

MSMT17 Baseline

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50) ImageNet 72.3% 48.3% 9.7%
BoT(R50-ibn) ImageNet 77.0% 54.4% 12.5%
BoT(S50) ImageNet 80.4% 59.2% 15.9%
BoT(R101-ibn) ImageNet 79.0% 57.5% 14.6%

AGW:

Method Pretrained Rank@1 mAP mINP
AGW(R50) ImageNet 76.7% 53.6% 12.2%
AGW(R50-ibn) ImageNet 79.3% 57.5% 14.3%
AGW(S50) ImageNet 77.3% 54.7% 12.6%
AGW(R101-ibn) ImageNet 80.8% 60.2% 16.5%

SBS:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet 83.3% 59.9% 14.6%
SBS(R50-ibn) ImageNet 84.0% 61.2% 15.5%
SBS(S50) ImageNet 82.6% 58.2% 13.2%
SBS(R101-ibn) ImageNet 85.1% 63.3% 16.6%

MGN:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet 82.9% 61.2% 14.9%
SBS(R50-ibn) ImageNet 85.1% 65.4% 18.4%
SBS(R101-ibn) ImageNet 96.3% 90.3% 70.0%

VeRi Baseline

SBS:

Method Pretrained Rank@1 mAP mINP
BoT(R50-ibn) ImageNet 97.0% 81.3% 44.9%

VehicleID Baseline

BoT: Method: BoT(R50-ibn+gem pooling+weighted triplet+soft margin) Test protocol: 10-fold cross-validation

Testset size Pretrained Rank@1 Rank@5
Small(800) ImageNet 86.6% 97.9%
Medium(1600) ImageNet 82.9% 96.0%
Large(2400) ImageNet 80.6% 93.9%

VERI-Wild Baseline

BoT: Method: BoT(R50-ibn+gem pooling+weighted triplet+soft margin)

Testset size Pretrained Rank@1 mAP mINP
Small(3000) ImageNet 96.4% 87.7% 69.2%
Medium(5000) ImageNet 95.1% 83.5% 61.2%
Large(10000) ImageNet 92.5% 77.3% 49.8%