fast-reid/fastreid/evaluation/rerank.py

74 lines
3.3 KiB
Python

# encoding: utf-8
# based on:
# https://github.com/zhunzhong07/person-re-ranking
__all__ = ['re_ranking']
import numpy as np
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1: int = 20, k2: int = 6, lambda_value: float = 0.3):
original_dist = np.concatenate(
[np.concatenate([q_q_dist, q_g_dist], axis=1),
np.concatenate([q_g_dist.T, g_g_dist], axis=1)],
axis=0)
original_dist = np.power(original_dist, 2).astype(np.float32)
original_dist = np.transpose(1. * original_dist / np.max(original_dist, axis=0))
V = np.zeros_like(original_dist).astype(np.float32)
initial_rank = np.argsort(original_dist).astype(np.int32)
query_num = q_g_dist.shape[0]
gallery_num = q_g_dist.shape[0] + q_g_dist.shape[1]
all_num = gallery_num
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate,
:int(np.around(k1 / 2.)) + 1]
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,
:int(np.around(k1 / 2.)) + 1]
fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate]
if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len(
candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = 1. * weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
if k2 != 1:
V_qe = np.zeros_like(V, dtype=np.float32)
for i in range(all_num):
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(gallery_num):
invIndex.append(np.where(V[:, i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist, dtype=np.float32)
for i in range(query_num):
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float32)
indNonZero = np.where(V[i, :] != 0)[0]
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]],
V[indImages[j], indNonZero[j]])
jaccard_dist[i] = 1 - temp_min / (2. - temp_min)
final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value
del original_dist, V, jaccard_dist
final_dist = final_dist[:query_num, query_num:]
return final_dist