mirror of https://github.com/JDAI-CV/fast-reid.git
171 lines
7.5 KiB
Python
171 lines
7.5 KiB
Python
# encoding: utf-8
|
|
|
|
"""Helper for evaluation on the Labeled Faces in the Wild dataset
|
|
"""
|
|
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2016 David Sandberg
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import numpy as np
|
|
import sklearn
|
|
from scipy import interpolate
|
|
from sklearn.decomposition import PCA
|
|
from sklearn.model_selection import KFold
|
|
|
|
|
|
def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, pca=0):
|
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
|
nrof_thresholds = len(thresholds)
|
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
|
|
|
|
tprs = np.zeros((nrof_folds, nrof_thresholds))
|
|
fprs = np.zeros((nrof_folds, nrof_thresholds))
|
|
accuracy = np.zeros((nrof_folds))
|
|
best_thresholds = np.zeros((nrof_folds))
|
|
indices = np.arange(nrof_pairs)
|
|
|
|
if pca == 0:
|
|
diff = np.subtract(embeddings1, embeddings2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
|
# print('train_set', train_set)
|
|
# print('test_set', test_set)
|
|
if pca > 0:
|
|
print('doing pca on', fold_idx)
|
|
embed1_train = embeddings1[train_set]
|
|
embed2_train = embeddings2[train_set]
|
|
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
|
|
# print(_embed_train.shape)
|
|
pca_model = PCA(n_components=pca)
|
|
pca_model.fit(_embed_train)
|
|
embed1 = pca_model.transform(embeddings1)
|
|
embed2 = pca_model.transform(embeddings2)
|
|
embed1 = sklearn.preprocessing.normalize(embed1)
|
|
embed2 = sklearn.preprocessing.normalize(embed2)
|
|
# print(embed1.shape, embed2.shape)
|
|
diff = np.subtract(embed1, embed2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
|
|
# Find the best threshold for the fold
|
|
acc_train = np.zeros((nrof_thresholds))
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
_, _, acc_train[threshold_idx] = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set])
|
|
best_threshold_index = np.argmax(acc_train)
|
|
# print('best_threshold_index', best_threshold_index, acc_train[best_threshold_index])
|
|
best_thresholds[fold_idx] = thresholds[best_threshold_index]
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy(threshold,
|
|
dist[test_set],
|
|
actual_issame[
|
|
test_set])
|
|
_, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], dist[test_set],
|
|
actual_issame[test_set])
|
|
|
|
tpr = np.mean(tprs, 0)
|
|
fpr = np.mean(fprs, 0)
|
|
return tpr, fpr, accuracy, best_thresholds
|
|
|
|
|
|
def calculate_accuracy(threshold, dist, actual_issame):
|
|
predict_issame = np.less(dist, threshold)
|
|
tp = np.sum(np.logical_and(predict_issame, actual_issame))
|
|
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
|
tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
|
|
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
|
|
|
|
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
|
|
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
|
|
acc = float(tp + tn) / dist.size
|
|
return tpr, fpr, acc
|
|
|
|
|
|
def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10):
|
|
'''
|
|
Copy from [insightface](https://github.com/deepinsight/insightface)
|
|
:param thresholds:
|
|
:param embeddings1:
|
|
:param embeddings2:
|
|
:param actual_issame:
|
|
:param far_target:
|
|
:param nrof_folds:
|
|
:return:
|
|
'''
|
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
|
nrof_thresholds = len(thresholds)
|
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
|
|
|
|
val = np.zeros(nrof_folds)
|
|
far = np.zeros(nrof_folds)
|
|
|
|
diff = np.subtract(embeddings1, embeddings2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
indices = np.arange(nrof_pairs)
|
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
|
|
|
# Find the threshold that gives FAR = far_target
|
|
far_train = np.zeros(nrof_thresholds)
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
_, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set])
|
|
if np.max(far_train) >= far_target:
|
|
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
|
|
threshold = f(far_target)
|
|
else:
|
|
threshold = 0.0
|
|
|
|
val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set])
|
|
|
|
val_mean = np.mean(val)
|
|
far_mean = np.mean(far)
|
|
val_std = np.std(val)
|
|
return val_mean, val_std, far_mean
|
|
|
|
|
|
def calculate_val_far(threshold, dist, actual_issame):
|
|
predict_issame = np.less(dist, threshold)
|
|
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
|
|
false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
|
n_same = np.sum(actual_issame)
|
|
n_diff = np.sum(np.logical_not(actual_issame))
|
|
val = float(true_accept) / float(n_same)
|
|
far = float(false_accept) / float(n_diff)
|
|
return val, far
|
|
|
|
|
|
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
|
|
# Calculate evaluation metrics
|
|
thresholds = np.arange(0, 4, 0.01)
|
|
embeddings1 = embeddings[0::2]
|
|
embeddings2 = embeddings[1::2]
|
|
tpr, fpr, accuracy, best_thresholds = calculate_roc(thresholds, embeddings1, embeddings2,
|
|
np.asarray(actual_issame), nrof_folds=nrof_folds, pca=pca)
|
|
# thresholds = np.arange(0, 4, 0.001)
|
|
# val, val_std, far = calculate_val(thresholds, embeddings1, embeddings2,
|
|
# np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds)
|
|
# return tpr, fpr, accuracy, best_thresholds, val, val_std, far
|
|
return tpr, fpr, accuracy, best_thresholds
|