fast-reid/projects/HAA
liaoxingyu 2e09f424a5 fix typro
Summary: fix typro in HAA
2020-05-27 22:41:12 +08:00
..
Readme.md fix typro 2020-05-27 22:41:12 +08:00

Readme.md

Black Re-ID: A Head-shoulder Descriptor for the Challenging Problem of Person Re-Identification

Training

To train a model, run

CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yml>

Evaluation

To evaluate the model in test set, run similarly:

CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <configs.yaml> --eval-only MODEL.WEIGHTS model.pth

Experimental Results

Market1501 dataset

Method Pretrained Rank@1 mAP
ResNet50 ImageNet 93.3% 84.6%
MGN ImageNet 95.7% 86.9%
HAA (ResNet50) ImageNet 95% 87.1%
HAA (MGN) ImageNet 95.8% 89.5%

DukeMTMC dataset

Method Pretrained Rank@1 mAP
ResNet50 ImageNet 86.2% 75.3%
MGN ImageNet 88.7% 78.4%
HAA (ResNet50) ImageNet 87.7% 75.7%
HAA (MGN) ImageNet 89% 80.4%

Black-reid black group

Method Pretrained Rank@1 mAP
ResNet50 ImageNet 80.9% 70.8%
MGN ImageNet 86.7% 79.1%
HAA (ResNet50) ImageNet 86.7% 79%
HAA (MGN) ImageNet 91.0% 83.8%

White-reid white group

Method Pretrained Rank@1 mAP
ResNet50 ImageNet 89.5% 75.8%
MGN ImageNet 94.3% 85.8%
HAA (ResNet50) ImageNet 93.5% 84.4%
HSE (MGN) ImageNet 95.3% 88.1%